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SOLUTION OF THE BOUNDARY VALUE PROBLEMS OF ELASTOSTATICS
FOR A PLANE WITH CIRCULAR HOLE WITH VOIDS
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Abstract. In the present paper, the special representations of a general solution of a system
of differential equations of the theory of elastic materials with voids is constructed by using
harmonic, biharmonic and metaharmonic functions which make it possible to reduce the
initial system of equations to equations of simple structure and facilitate the solution of
initial problems. These representations are used to solve problems for an elastic plane with
circular hole and with voids. The solutions are written explicitly in the form of absolutely and
uniformly converging series. The uniqueness of regular solutions of the considered problems
is also investigated.
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1. Introduction

The history of construction and research of models of the mechanics of porous materials
has been around for about two centuries. The first main results were of an experimental
nature. From the middle of the previous century the works of M. Bio [1] begin a new period
in the mechanics of porous materials. Both linear and nonlinear theories are constructed.
Intensively there is a study of the problems of the theoretical and practical nature of these
theories. For a history of developments and a review of main results in the theory of porous
media, see the books of de Boer [2], Straughan [3],[4].

Two types of porous materials are considered. 1) porous materials saturated (or unsat-
urated) with liquid, and 2) porous materials with voids. In this paper we study boundary
problems for elastic materials with empty pores. The foundations of the linear theory of
elastic materials with voids were first proposed by Cowin and Nunziato [5]. Such materi-
als include, in particular, rocks and soils, granulated and some other manufactured porous
materials.

Problems of elasticity for materials with voids were investigated by many authors. Below
we mention only a few works where the bibliographical information can also be found. In the
framework of the theory of linear elastic materials with voids in [6] some basic theorems on
the existence and uniqueness of a solution are given, reciprocity relations and the variation
characteristic of the solution. In [7], solutions are obtained for equations of the classical theory
of elastodynamics of homogeneous and isotropic elastic materials with voids. In the work
[8] boundary value problems of stationary oscillations in the linear theory of homogeneous
and isotropic materials with voids are investigated. In [9] the behavior of plane harmonic
waves in an elastic material with pores is studied and the main properties of these waves
are established. Also established are the existence and uniqueness of solutions for external
problems. Existence theorems in equilibrium theory are proved in [10].
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The linear theory of thermoelastic materials with voids was for the first time considered
in the work of Iesan [11]. Solutions of Galerkin type and uniqueness theorems in the theory of
thermo-elasticity for materials with voids are proved in [12, 13]. Problems of steady vibrations
of elastic and thermoelastic materials with voids are investigated in [15]. The linear theory
of micropolar thermoelasticity is considered for materials with voids in the papers [14] and
[15].The nonlinear theory of elastic porous materials with voids was proposed in the work of
Nunziato and Cowin [16].

From the point of view of applications, it is actual to construct explicit solutions of
problems, which makes it possible to effectively analyze the problem under study. Some of
these results are presented in [17-25] and in references to them.

In the present paper, the special representations of a general solution of a system of
differential equations of the theory of elastic materials with voids is constructed by using
harmonic, biharmonic and metaharmonic functions which make it possible to reduce the
initial system of equations to equations of simple structure and facilitate the solution of
initial problems. These representations are used to solve problems for an elastic plane with
circular hole and with voids. The solutions are written explicitly in the form of absolutely and
uniformly converging series. The uniqueness of regular solutions of the considered problems
is also investigated.

2. Basic equations and boundary value problems

Let D be a plane with a circular hole S, consisting of empty pores. A system of equations
of the linear theory of elastic materials with voids has the form [5, 8]:

µ∆u+ (λ+ µ)graddivu+ βgradφ = 0,

α∆φ− ξφ− βdivu = 0,
(1)

where u = u(u1, u2) is the displacement vector in a solid, φ is a change with respect to the
pore area; λ and µ are the Lamé constants; α, β and ξ are the constants characterizing the
body porosity.

Let us now formulate the boundary value problems.
Find, a regular vector U(x) = (u(x), φ) in D that satisfies the system of equations (1)

and, on the boundary S , one of the following conditions :

I.u(z) = f(z), φ(z) = f3(z);

II.P1(∂z,n)U(z) = f(z), ∂nφ(z) = f3(z), z ∈ S,
(2)

where f(z) = (f1(z), f2(z)), f3(z) are the given functions on the circumference S.
Vector U(x) satisfies the following conditions at infinity:

U(x) = o(1), r2∂xkU(x) = O(1) (3)

-in the problem I, and
U(x) = O(1), r2∂xkU(x) = O(1) (4)

-in the problem II, where r2 = x21 + x22, k = 1, 2.
The stress vector can be written as [5]

P (∂x,n)U(x) =

(
P1 (∂x,n)U(x)
α∂nφ(x)

)
,
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where
P1 (∂x,n)U(x) = T (∂x,n)u(x) + βnφ(x),

T (∂x,n)u(x) = µ∂nu(x)+ λndivu(x)+ µ
2∑
i=1

ni(x)gradui(x)

-is the stress vector in the classical theory of elasticity [27].

3. A representation of the general solution

The solution of system (1) is written in the form u(x) = c0û(x) + c1ǔ(x),

φ(x) = φ1(x) + φ2(x),
(5)

where φ1 is a harmonic function, ∆φ1 = 0, and φ2 is a metaharmonic function with the

parameter s21, (∆ + s21)φ2 = 0; s1 = i

√
µ0ξ − β2

µ0α
= is0, i =

√
−1,

λ > 0, µ > 0, α > 0, µ0ξ − β2 > 0; (6)

c0 and c1 are the unknown constants for the time being. A general solution û = (û1, û2) of
the homogeneous equation, corresponding to the nonhomogeneous equation (1)1 with respect
to û, is represented as follows [24]

û(z) = grad[Φ1(x) + Φ2(x)] + rotΦ3(x) + c2Γ(x), (7)

where the functions Φ2(x) and Φ3(x) are related to each other by the equality

µ0grad∆Φ2(x) + µrot∆Φ3(x) = 0, (8)

∆Φ1(x) = 0, ∆∆Φ2(x) = 0, ∆∆Φ2(x) = 0,

Φ1(x), Φ2(x), Φ3(x)- are scalar functions, Γ(x) = Γ(x2,−x1), divΓ = 0, c2 is the
sought coefficient, rot = (− ∂

∂x2
, ∂
∂x1

), ǔ = (ǔ1, ǔ2) is one of the particular solutions of
equation (1)1:

ǔ(z) = − β

µ0
grad

(
− 1

s21
φ2 + φ0

)
, (9)

where φ0 is chosen such that ∆φ0 = φ1 . It is obvious that φ0 is a biharmonic function:
∆∆φ0 = ∆φ1 = 0. For simplicity, the function φ1 is chosen such that φ1 = divû ≡ ∆Φ2.
Then we can take φ0 = Φ2. Let us calculate the values of the coefficients c0 andc1 in
representation (7). We apply the operator div to the first equality in (7) and compare the
obtained expression with divu defined by equation (12). We obtain

c0 =
µ0ξ − β2

µ0β
, c1 = 1.

By an immediate verification we make sure that representations (7) satisfy equations (1)1
and (1)2.
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4. Uniqueness theorems

For a regular solution U of equation (1) under conditions (3) and (4) Green’s formulas
[27] 

∫
D

[E(u,u) + βφdivu]dx = −
∫
S

uP1 (∂y,n)UdyS,

∫
D

(
α|gradφ|2 + ξφ2 + βφdivu)

}
dx = −

∫
S

αφ∂ndyS

(10)

are valid, where

E(u,u) = (λ+ µ)(divu)2 + µ

(
∂u1
∂x1

− ∂u2
∂x2

)2

+ µ

(
∂u2
∂x1

+
∂u1
∂x2

)2

under conditions (6) , is a non negative quadratic form [25].
Let U′ and U′′ be two arbitrary solutions of any of the problems I and II. For their difference
U = (u, φ) = U′ − U′′, the right-hand sides of formulas (10) are zero on K. From these
equalities, taking into account conditions (6) and the equality

ξφ2 + βφdivu =
µ0ξ − β2

µ0
φ2(φ1 + φ2),

we obtain:

φ1(x) = k, φ2(x) = 0, E(u,u) + βkdivu = 0, (11)

where k is an arbitrary constant.

In the case of the first homogeneous problem

φ(x) = 0, x ∈ D.

Consequently, k = 0, and E(u,u) = 0. The solution of the above equation has the form [25]:

u1 = q1 − px2, u2 = q2 + px1,

where p, q1, q2 are arbitrary constants. In addition, in Problem I , by virtue of the homoge-
neous boundary condition we get p = q1 = q2 = 0, and hence,

u1(x) = u2(x) = φ(x) = 0, x ∈ D.

Thus, we have

Theorem 1. Problem I has a unique solution.
The solution of the homogeneous Problem II, which also satisfies equations (14), has the
form:

u(x) = lx+α, (12)

where l = − kβ

2(λ+ µ)
, α = (α1, α2) -is an arbitrary constant vector. Taking into account

conditions (4), we can write from (12): l = 0. So, we get u(x) = 0. Thus, we have
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Theorem 2.Two arbitrary solutions of Problem II can differ from each other only by a
constant vector.

5. Solution of the problems

Let us rewrite representations (7) in terms of polar coordinates r and ψ as normal and
tangent components 

un = ∂r(c0Φ1 + c3Φ2 + c4φ2)− c0
1

r
∂ψΦ3,

us =
1

r
∂ψ(c0Φ1 + c3Φ2 + c4φ2) + c0∂rΦ3 − c2r,

φ = φ1 + φ2,

(13)

where c3 = − ξ

β
, c4 =

β

µ 0

s21, r2 = x21 + x22.

Using formula (8) and the equality φ1 = ∆Φ2 , the harmonic and biharmonic functions
and also the metaharmonic function contained in (13) are represented in the domain D as
series [28, 29]:

Φ1 =
∞∑
m=0

(
R

r

)m
(Xm3 · νm(ψ)),

Φ2 =
R2

4

∞∑
m=2

1

1−m

(
R

r

)m−2

(Xm1 · νm(ψ)),

Φ3 =
R2µ0
4µ

∞∑
m=2

1

1−m

(
R

r

)m−2

(Xm1 · sm(ψ)),

φ1 =
∞∑
m=0

(
R

r

)m
(Xm1 · νm(ψ)), φ2 =

∞∑
m=0

Km(s0r)(Xm2 · νm(ψ)),

(14)

where Xmk is the sought two-component vector, k = 1, 2, 3, x = (r, ψ); νm =
(cosmψ, sinmψ), sm = (− sinmψ, cosmψ), Km(s0r) - is a modified Hankel function of
the imaginary argument; Km(s0r) → 0, r → ∞.

Let us write the boundary conditions of Problem I in the form of normal and tangent
components

un(z) = fn(z), us(z) = fs(z), φ(z) = f3(z). (15)

Let the functions fn, fs and f3 be expanded in the Fourier series, whose coefficients are αm, βm
and γm, respectively. m is the summation index.

Let us substitute expressions (14) into (13) and pass to the limit as r → R. Then obtained
results substitute into (15). We obtain the linear algebraic systems of equations:

For m = 0 

c3RX01 + 2s0c4K
′
0(s0R)X02 = α0,

c0Rµ0X01 − 2
1

R
X03 = β0,

2X01 + 2K0(s0R)X02 = γ0,

(16)
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where, for convenience, we have introduced the notation X03 ≡ c2.

For m = 1, we have 

c4s0K
′
1(s0R)X12 −

c0
R
X13 = α1,

c4K1(s0R)X12 + c0X13 = Rβ1,

X11 +K1(s0R)X12 = γ1.

(17)

For m = 2, 3, ... we obtain

R

4µ(m− 1)
[c3(m− 2)µ− c0µ0m]Xm1 + c4s0K

′
m(s0R)Xm2 −

c0m

R
Xm3 = αm,

R

4µ(m− 1)
[−c3µ+ c0µ0(m− 2)m]Xm1 +

c4m

R
Km(s0R)Xm2 +

c0m

R
Xm3 = βm,

Xm1 +Km(s0R)Xm2.

(18)

We solve systems (16), (17) and (18). The obtained values of vectors Xmk are substituted
into (14). Then, using formulas (7), (9) and (5), we obtain the solution of the considered
problem I.

The problem II is solved similarly. Rewrite boundary conditions (2)2 in the form P1 (∂z,n)U(z)n = fn(z), P1 (∂z,n)U(z)s = fs(z),

α∂rφ(z) = f3(z),
(19)

where

P1 (∂x,n)U(x)n = µ0∂run(x) +
λ

r
∂ψus(x) + βφ(x),

P1 (∂x,n)U(x)s = µ[∂rus(x) +
1

r
∂ψun(x)],

∂nφ(x) = ∂rφ(x).

Substitute (13) and (14) into (19). Passing to the limit as r → R, we obtain the algebraic
systems of equations:

For m = 0 we have

(
c3
µ0
2

+ β
)
X01 + [c4s

2
0K

′′
0 (s0R) + βK0(s0R)]X02 =

α0

2
,

c0
µ0
2
X01 +

µ

R2
X03 =

β0
2
,

s0K
′
0(s0R)X02 =

γ0
2
,

where X03 ≡ c2.
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For m = 1, we have

µ0
4

(
c0
µ

+ c3

)
X11 +

[
c4µ0s

2
0K

′′
1 (s0R)−

c4λ

R
K1(s0R) + βK1(s0R)

]
X12

+
c0
R

2µ0
R
X13 = α1,

1

4

(
c3R+

c0µ0
µ

)
X11 +

c4
R

[
− 1

R
K1(s0R) + 2s0K

′
1(s0R)

]
X12 −

3

R2
c0X13 =

β1
µ
,

− 1

R
+ s0K

′
1(s0R)X12 = γ1.

For m = 2, 3, ... we get

1

4

[
c0µ0m

µ
− c3(m− 2)µ0 +

c3mRλ

m− 1
β − c0λRµ0m(m− 2)

µ(m− 1)

]
Xm1

+

[
c4µ0s

2
0K

′′
m(s0R)−

c4λm
2

R
Km(s0R) + βKm(s0R)

]
Xm2

+

[
c0µ0m(m+ 1)

R2
− c0λm

2

R

]
Xm3 = αm,

1

4

[
c3mR− c0µ0(m− 2)

µ
− c3m(m− 2)

m− 1
− c0µ0m

2

µ
(m− 1)

]
Xm1

+
1

R

[
c4m[− 1

R
Km(s0R) + s0K

′
m(s0R)] + c4s0mK

′
m(s0R)

]
Xm2

−(2m+ 1)c0m

R2
Xm3 =

βm
µ
,

−m
R
Xm1 + s0K

′
m(s0R)Xm2 = γm.

Solving these systems and substituting the obtained values of the vectors into (14), by for-
mulas (7), (9) and (5) we obtain the solution of Problem II.

For the obtained series to converge absolutely and uniformly it suffices to require that

f, f3 ∈ C3(K)

In Problem I:
f, f3 ∈ C2(K)

In Problem II:
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