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THE NEUMANN BVP OF THE LINEAR THEORY OF THERMOELASTICITY
FOR THE SPHERE WITH VOIDS AND MICROTEMPERATURES

Bitsadze L.

Abstract. In the present paper we investigate the elastic sphere with voids and microtem-
peratures. Special representations of a general solution of a system of equations for a homo-
geneous isotropic thermoelastic medium with voids and microtemperatures are constructed
by means of the elementary (harmonic, bi-harmonic and meta-harmonic) functions. The
Neumann type boundary value problems for the sphere are solved explicitly. The obtained
solutions are represented by absolutely and uniformly convergent series.
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1. Introduction

The present paper considers the 3D linear theory of thermoelasticity for materials with
voids and microtemperatures. This theory is the generalization of the classical theory of
elasticity. The theory of porous materials with voids is used for investigated various types
of geological and biological materials for which classical theory of elasticity is not adequate.
Porous materials have applications in many fields of engineering, such as the petroleum
industry, material science and biology. This theory study the behavior of elastic porous
materials like the rock, the bone and the manufactured porous materials. The voids are
assumed to contain nothing of mechanical or energetic significance.

Recently the linear theory of thermoelasticity for materials with voids and microtempera-
tures has been expanding and developing in different directions. For example, the non-linear
version of elastic materials with voids was proposed by Nunziato and Cowin [1] and the linear
version was developed by Cowin and Nunziato [2] to study mathematically the mechanical
behaviour of porous solids. Ieşan in [3] established a variational theory for thermoelastic
materials with voids. In [4,5] Ciarletta and Scalia studied a linear theory of thermoelasticity
for materials with voids and established uniqueness and reciprocal theorems. In [6] Ieşan and
Quintanilla have developed the theory of Nunziato and Cowin for thermoelastic deformable
materials with double porosity structure by using the mechanics of materials with voids.

Many problem are investigated for elastic materials with microtemperatures by several
researchers (some of those articles can be seen in [7-22] and references therein).

In the present work we consider the elastic sphere with voids and microtemperatures.
The general solution of the equations for a homogeneous isotropic thermoelastic medium with
voids and microtemperatures is constructed. The Neumann type boundary value problem
for the sphere is explicitly solved. The obtained solution is represented as absolutely and
uniformly convergent series.

2. Basic equations

Let us consider the isotropic elastic ball D consisting of voids and microtemperatures and
bounded by the spherical surface S with center at the origin and radius R. Let D− be the
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whole space with a spherical cavity and with boundary S. D− = E3\D+. Let x = (x1, x2, x3)
be a point in the Euclidean 3D space E3.

The homogeneous system of equations of the linear equilibrium theory of thermoelasticity
with voids and with microtemperatures has the form [7,13,14](

µ− p

2

)
∆u+

(
λ+ µ+

p

2

)
graddivu+ λ0gradϕ− βgradT = 0, (1)

k6∆w+ (k4 + k5)graddivw− k3gradT − k2w = 0, (2)

k∆T + k1divw = 0, (3)

(α∆− ε1)ϕ− λ0divu− µ1divw+mT = 0, (4)

where u := (u1, u2, u3)
⊤ is the displacement vector, α, λ0, ε1,m are the material constants due

to presence of voids, ϕ is the change in volume fraction field, k is the thermal conductivity,
T is the absolute temperature, µ1, ki(i = 1, 2, ..., 6) are the constitutive coefficients, w :=
(w1, w2, w3)

⊤ is the microtemperature vector, p is the initial pressure, λ, µ are the Lame’s
constants, β = (3λ+ 2µ)αt such that αt is the coefficient of thermal expansion, ∆ is the 3D
Laplace operator. The superscript ⊤ denotes transposition.

Definition. A vector-function U = (u,w, ϕ, T ) defined in the domain D(D−) is called
regular if

U ∈ C2(D) ∩ C1(D)

and in the case of the domain D−, the vector U should additionally satisfy the following
conditions at the infinity:

U(x) = O(|x|−1)
∂U

∂xj
= O(|x|−2) |x|2 = x21 + x22 + x23 >> 1, j = 1, 2, 3.

The Neumann type boundary value problems (BVPs) for Eqs.(1)-(4) are formulated as
follows:

Problem 1. Find a regular solution U to Eqs. (1)-(4), in the domain D+ satisfying the
following boundary conditions on S:

lim
D+∋x→z∈S

u = G+(z), lim
D+∋x→z∈S

P(2) (∂x,n)w(x) = f+(z),

lim
D+∋x→z∈S

ϕ(x) = f+4 (z), lim
D+∋x→z∈S

T (x) = f+5 (z), z ∈ S,

Problem 2. Find a regular solution U to Eqs. (1)-(4), in the domain D− satisfying the
following boundary conditions on S:

lim
D−∋x→z∈S

u = G−(z), lim
D−∋x→z∈S

P(2) (∂x,n)w(x) = f−(z),

lim
D−∋x→z∈S

ϕ(x) = f−4 (z), lim
D−∋x→z∈S

T (x) = f−5 (z), z ∈ S,

where n(z) is the external unit normal vector on z ∈ S, the vector-functions G(z) =
(G1, G2, G3), f(z) = (f1, f2, f3), and the functions f4(z), f5(z), are prescribed on S, at z,
the vector P(2)(∂x,n)w has the following form

P(2)(∂x,n)w = (k5 + k6)
∂w

∂n
+ k4n divw+ k5[n · rotw],

∂

∂n
= n1

∂

∂x1
+ n2

∂

∂x2
+ n3

∂

∂x3
.

(5)
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[x · g]-denotes the vector product of the two vectors x and g, The following assertion holds.
Theorem 1. The Neumann type boundary value problem has at most one regular solution

in the domain D+(D−).

3. Preliminaries

Let us introduce the spherical coordinates equalities

x1 = ρ sin ξ cos η, x2 = ρ sin ξ sin η, x3 = ρ cos ξ, x ∈ D+,

y1 = R sin ξ0 cos η0, y2 = R sin ξ0 sin η0, y3 = R cos ξ0, y ∈ S,

|x|2 = ρ2 = x21 + x22 + x23, 0 ≤ ϑ ≤ π, 0 ≤ φ ≤ 2π 0 ≤ ρ ≤ R.

In the sequel we use the following notation: If g(x) = g(g1, g2, g3) and q(x) = q(q1, q2, q3)
then by symbols (g.q) and [g.q] will denote the scalar product and vector product respectively

(g.q) =
3∑

k=1

gkqk, [g.q] = (g2q3 − g3q2, g3q1 − g1q3, g1q2 − g2q1),

We introduce the following notation:

[x · ∇]k =
∂

∂Sk(x)
, k = 1, 2, 3, ∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3,

)
,

The following identities are valid [24]:

(x · rotg) =
3∑

k=1

∂gk(x)

∂Sk(x)
,

3∑
k=1

∂

∂Sk(x)
(rot[x · ∇]h)k = 0,

3∑
k=1

∂

∂Sk(x)
(rotg(x))k = ρ

∂

∂ρ
divg(x)−

3∑
k=1

xk∆gk(x),

3∑
k=1

∂

∂Sk(x)
[x · g]k = ρ2divg(x)−

(
ρ
∂

∂ρ
+ 1

)
(x · g(x)),

3∑
k=1

∂

∂Sk(x)
[x · rotg(x)]k = −

(
ρ
∂

∂ρ
+ 1

) 3∑
k=1

∂gk(x)

∂Sk(x)
,

3∑
k=1

xk
∂

∂Sk(x)
= 0,

∂

∂Sk(x)

∂

∂xk
=

∂

∂xk

∂

∂Sk(x)
,

3∑
k=1

∂2

∂S2
k(x)

=
∂2

∂ϑ2
+ ctgϑ

∂

∂ϑ
+

1

sin2ϑ

∂2

∂φ2
,

∂xk
∂Sk

= 0,

3∑
k=1

∂

∂Sk(x)

∂

∂xk
= 0,

∂g(ρ)Y (ϑ, φ)

∂Sk(x)
= g(ρ)

∂Y (ϑ, φ)

∂Sk(x)
,

∂

∂Sk(x)

∂

∂ρ
=

∂

∂ρ

∂

∂Sk(x)
, ∆

∂g(x)

∂Sk(x)
=

∂

∂Sk
∆g(x),
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Below we frequently used the formulas

[x[x · g]] = x(x · g)− |x|2g(x),

3∑
k=1

∂

∂Sk(x)
[x[x · g]]k = −|x|2

3∑
k=1

∂gk(x)

∂Sk(x)
.

If gm is the spherical harmonic, the operator
∂

∂Sk
, k = 1, 2, 3, does not affect the order of

the spherical function:[23]

3∑
k=0

∂2gm(x)

∂S2
k(x)

= −m(m+ 1)gm(x).

Let us introduce the following notation

(x · u)± = h±1 ,

(
3∑

k=0

∂

∂Sk(z)
[x · u]k

)±
= h±2 ,

(
3∑

k=0

∂

∂Sk(z)
[u]k

)±
= h±3 ,

(
x ·P(2)w

)±
= h±4 ,

(
3∑

k=0

∂

∂Sk(z)
[x ·P(2)w]k

)±
= h±5 ,

(
3∑

k=0

∂

∂Sk(z)
[P(2)w]k

)±
= h±6 , f±4 = h±7 , f±5 = h±8 .

(6)

We assume that the functions hk(y) are representable by the series form.

h±k (y) =

∞∑
m=0

h±km(ξ0, η0),

where h±km is the spherical harmonic of order m :

h±km =
2m+ 1

4πR2

∫
S

Pm(cos γ)hm(y)dSy,

Pm is Legender polynomial of the m-th order, γ is an angle formed by the radius-vectors Ox
and Oy.

It is well known that the general solutions of the equations (∆+ λ2k)ψ = 0, k = 1, 2, in
the domain D+(D−) have the form ([25])

ψ(x) =
∞∑

m=0
ϕ
(1)
m (λkρ)Ym(ϑ, φ), ϕ

(1)
m (λkρ) =

√
RJm+ 1

2
(λkρ)

√
ρJm+ 1

2
(λkR)

, ρ < R,

ψ(x) =
∞∑

m=0
Ψ

(1)
m (λkρ)Ym(ϑ, φ), Ψ

(1)
m (λkρ) =

√
RH

(1)

m+ 1
2

(λkρ)

√
ρH

(1)

m+ 1
2

(λkR)
, ρ > R,

(7)
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and the general solution of the equation ∆ϕ = 0 in the domain D+(D−) has the form ([25])
ϕ(x) =

∞∑
m=0

ρm

Rm
Zm(ξ, η), ρ < R,

ϕ(x) =
∞∑

m=0

Rm+1

ρm+1
Zm(ξ, η), ρ > R,

(8)

respectively, where Ym and Zm are the spherical harmonics.

4. Expansion of regular solutions

In this section we obtain a general solution for system (1)-(4), which makes it possible to
solve the BVPs for the sphere.

From (3)-(4) it follows that

divw = − k

k1
∆T, (9)

divu =
1

λ0

[
µ1k

k1
∆T + (α∆− ε1)ϕ+mT

]
, (10)

Applying the operator div to the equation (2) and taking into account (9), we obtain

−(k7∆− k2)k

k1
∆T − k3∆T = 0, k7 = k4 + k5 + k6. (11)

From here we find

−kk7
k1

(∆− s21)∆T = 0, (12)

where

s21 =
kk2 − k1k3

kk7
.

Applying the operator div to the equation (1), we get

µ0∆divu+ λ0∆ϕ− β∆T = 0, µ0 = λ+ 2µ. (13)

In view of (10), the equation (13) reduces to the following equation

∆(∆− s23)ϕ =
1

αµ0

[
βλ0 − µ0

(
µ1k

k1
∆T +m

)]
∆T, (14)

where

s23 =
ε1µ0 − λ20
αµ0

. (15)

Since T is a solution of equation (12), we can write

T = ϑ+ ϑ1, (16)

where

∆ϑ = 0, (∆− s21)ϑ1 = 0.
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The relations (9) and (14), in view of (16), can be written in the form
divw = − k

k1
s21ϑ1,

∆(∆− s23)ϕ =
s21
αµ0

[
βλ0 − µ0

(
µ1k

k1
s21 +m

)]
ϑ1.

(17)

From (10) and (17) it follows that the functions ϕ and divu can be represented in the
form

ϕ = ψ + ψ3 +
Aϑ1

s21 − s23
,

divu = qϑ− ε1
λ0
ψ − λ0

µ0

ψ3 + q1ϑ1,

where ψ is an arbitrary harmonic function ∆ψ = 0,

q =
m

λ0
, A =

1

αµ0

[
βλ0 − µ0

(
µ1k

k1
s21 +m

)]
,

q1 =
1

µ0α(s21 − s23)

[
mλ0 + β(αs21 − ε1) +

µ1ks
2
1

k1
λ0

]
.

Substituting the relations divu,Φ and T into (1), we get the following nonhomoge-
neous equation with respect to u

∆u =
2

2µ− p
grad

[
q0ψ +Qϑ− 2µ− p

2µ0

λ0ψ3 +Q1ϑ1

]
, (18)

where 

q0 =
(
λ+ µ+

p

2

) ε1
λ0

− λ0,

Q = −
(
λ+ µ+

p

2

)
q + β,

Q1 = −
(
λ+ µ+

p

2

)
q1 + β − λ0A

s21 − s23
.

(19)

The solution of equation (18) can be represented in the form

u = Ψ+ u0, (20)

where u0 denotes a particular solution of equation (18)

u0 =
2

2µ− p
grad

[
q0ψ0 +Qϑ0 −

2µ− p

2µ0

λ0ψ3

s23
+Q1

ϑ1

s21

]
, (21)
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the functions Ψ, ψ0 and ϑ0 are chosen such that

∆ψ0 = ψ, ∆ϑ0 = ϑ, ∆Ψ = 0,

divΨ = a0ψ + aϑ,

a0 =
2

λ0(2µ− p)

[
λ20 − ε1µ0

]
,

a =
2

2µ− p
[qµ0 − β] ,

2

2µ− p
Q1 = q1.

(22)

Now let us prove the following theorem:
Theorem 2. The regular solution w of equation (2) admits in the domain of

regularity a representation

w(x) = (
1
w +

2
w, ϕ, T ) (23)

Proof. Let w be a certain solution of equation (2). Let us prove that w can be
represented in the form (23). Using the identity

∆w = graddivw− rotrotw

from equation (2) we obtain

w =
k7
k2

graddivw− k6
k2

rotrotw− k3
k2

gradT.

Let
1
w =

k7
k2

graddivw− k3
k2

gradT, (24)

2
w = −k6

k2
rotrotw, (25)

then w =
1
w +

2
w, rot

1
w = 0 div

2
w = 0.

Taking into account the last equalities, from (25) we have

(∆− s22)
2
w = 0, s22 =

k2
k6
. (26)

Substituting the values divw and T into (1), we obtain

1
w = −grad

[
k3
k2
ϑ+

k

k1
ϑ1

]
. (27)

Theorem 3. The regular solution w, where w = (w1, w2, w3), can be represented
in the form (for details see in [20,24])

w = −grad

[
k3
k2
ϑ+

k

k1
ϑ1

]
+ c rotφ3(x), (28)
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where 

(∆− s22)φ
3 = 0, divφ3 = 0, c = −k6

k2
φ3(x) = [x · ∇]φ3(x) + rot[x.∇]φ4(x),

∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
, (∆− s22)φj = 0 j = 3, 4.

(29)

In addition if ∫
S(0,a1)

φjds = 0,

where S(0, a1) ⊂ D is an arbitrary spherical surface of radius a1. Between the vector
w(x) and the functions ψ, ϑ, ϑj, j = 1, 2, φj, j = 3, 4, there exists one-to-one
correspondence.

Remark. Hence, we have proved that the solution w(x) of equation (2) can be
written in the form

w(x) = −grad

[
k3
k2
ϑ+

k

k1
ϑ1

]
+ [x · ∇]φ4(x) + c rot[x · ∇]φ3(x), (30)

From the above reasoning we have proved the following theorem:

Theorem 4. The general solution of the system (1)-(4) admits in the domain of
regularity a representation

u = Ψ+
2

2µ− p
grad

[
q0ψ0 +Qϑ0 −

2µ− p

2µ0

λ0ψ3

s23
+Q1

ϑ1

s21

]
,

w(x) = −grad

[
k3
k2
ϑ+

k

k1
ϑ1

]
+ [x · ∇]φ4(x) + c rot[x · ∇]φ3(x),

ϕ = ψ + ψ3 +
Aϑ1

s21 − s23
, T = ϑ+ ϑ1,

(31)

where

∆ψ0 = ψ, ∆ϑ0 = ϑ, ∆Ψ = 0, ∆ϑ = 0, ∆ψ = 0,

(∆− s21)ϑ1 = 0, (∆− s23)ψ3 = 0, (∆− s22)φj = 0, j = 3, 4,

divΨ = a0ψ + aϑ, divw = − k

k1
s21ϑ1, divu = qϑ− ε1

λ0
ψ − λ0

µ0

ψ3 + q1ϑ1.

From relation (31), we conclude that the representation of a solution of u contains
harmonic, biharmonic, and metaharmonic functions, while the representation of w, ϕ
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and T contains a harmonic and a metaharmonic functions.

5. Solution of the BVP 1

The vector P(2)(∂x, ∂n)w has the form

P(2)(∂x, ∂n)w = (k5 + k6)
∂w

∂n
+ k4n divw+ k5[n · rotw], n(x) =

x

ρ
. (32)

If we use the following identities

∂

∂n
gradh(x) =

1

ρ
grad

[(
ρ
∂

∂ρ
− 1

)
h(x

]
,

∂

∂n
roth(x) =

1

ρ
rot

[(
ρ
∂

∂ρ
− 1

)
h(x

]
,

(33)

the vector P(2)(∂x, ∂n)w takes the form

P(2)(∂x, ∂n)w

=
k5 + k6
ρ

{
grad

(
ρ
∂

∂ρ
− 1

)[
−k3
k2
ϑ− k

k1
ϑ1

]

+ c rot

[(
ρ
∂

∂ρ
− 1

)
φ3(x)

]}
− k4ks

2
1

ρk1
xϑ1 + k5

1

ρ
[x ·φ(3)].

(34)

It is easily seen that, by direct calculation from (31) and (34) we obtain

(x · u) = (x ·Ψ) +
2

2µ− p
ρ
∂

∂ρ

[
q0ψ0 +Qϑ0 −

2µ− p

2µ0

λ0ψ3

s23
+Q1

ϑ1

s21

]
,

3∑
k=1

∂

∂Sk(x)
[x · u]k =

3∑
k=1

∂

∂Sk(x)
[x ·Ψ]k

+
2

2µ− p

3∑
k=1

∂2

∂S2
k(x)

[
q0ψ0 +Qϑ0 −

2µ− p

2µ0

λ0ψ3

s23
+Q1

ϑ1

s21

]

3∑
k=1

∂uk
∂Sk(x)

=
3∑

k=1

∂Ψk

∂Sk(x)
,

(35)



24 Bitsadze L.

(x ·P(2)(∂x, ∂n)w) = (k5 + k6)ρ
∂2

∂ρ2

[
−k3
k2
ϑ− k

k1

2∑
j=1

ϑj

]

+
s21k

k1
k4ρϑ1 + c(k5 + k6)

(
∂

∂ρ
− 1

ρ

) 3∑
k=0

∂2φ3

∂S2
k(x)

,

3∑
k=0

∂

∂Sk(x)

[
x ·P(2)(∂x, ∂n)w)

]
k

= (k5 + k6)

(
∂

∂ρ
− 1

ρ

)
3∑

k=0

∂2

∂S2
k(x)

[
−k3
k2
ϑ− k

k1

2∑
j=1

ϑj

]

−
{
c(k5 + k6)

[
ρ
∂2

∂ρ2
+

∂

∂ρ
− 1

ρ

]
+ k5ρ

}
3∑

k=0

∂2φ3

∂S2
k(x)

,

3∑
k=0

∂

∂Sk(x)

[
P(2)(∂x, ∂n)w)

]
k
= k5

(
∂

∂ρ
− 1

ρ

) 3∑
k=0

∂2φ4

∂S2
k(x)

,

ϕ = ψ + ψ3 +
Aϑ1

s21 − s23
, T = ϑ+ ϑ1.

Let us replace functions (x · Ψ) and
3∑

k=1

∂

∂Sk(x)
[x · Ψ]k with functions ϑ and ψ. To

this end, taking into account the following identities

∆(x ·Ψ) = 2div Ψ = 2[a0ψ + aϑ],

3∑
j=1

∂

∂Sk

[x · g]j = ρ2div g−
(
ρ
∂

∂ρ
+ 1

)
(x · g),

we obtain

(x ·Ψ) = Ω + 2 [a0ψ0 + aϑ0] ,

3∑
k=1

∂

∂Sk(x)
[x ·Ψ]k = ρ2 [a0ψ + aϑ]−

(
ρ
∂

∂ρ
+ 1

)
(x ·Ψ),

(36)

where Ω is an arbitrary harmonic function ∆Ω = 0.

We seek solutions to equations (1)-(4) with boundary conditions

u+ = F(y),
(
P(2)(∂x,n)w

)+

= f(y), ψ+ = f4(y), T+ = f5(y), y ∈ S,
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in the form (31), where

ϑ(x) =
∞∑
n=0

ρn

Rn
Yn(ξ, η), Ω =

∞∑
n=0

ρn

Rn
Z4n(ξ, η),

ϑ1(x) =
∞∑
n=0

ϕ
(1)
n (is1ρ)Z1n(ξ, η),

ψ3(x) =
∞∑
n=0

ϕ
(1)
n (is3ρ)Z2n(ξ, η),

φj(x) =
∞∑

m=0

ϕ
(1)
n (is2ρ)Yjn(ξ, η), j = 3, 4,

3∑
k=1

∂Ψk

∂Sk(x)
=

∞∑
n=0

ρn

Rn
Z3n(ξ, η), ψ =

∞∑
m=0

ρm

Rm
Zn(ξ, η), ρ < R,

(37)

where Zn, Zjn, Yn and Yjn are the unknown spherical harmonics of order n

ϕ
(1)
m (lρ) =

√
RJm+ 1

2
(lρ)

√
ρJm+ 1

2
(lR)

.

Taking into account (37), we can write the particular solutions of equations ∆ϑ0 = ϑ
and ∆ψ0 = ψ in the following form

ϑ0(x) =
1

2

∞∑
n=0

ρ2

3 + 2n

( ρ
R

)n

Yn(ξ, η). (38)

ψ0(x) =
1

2

∞∑
n=0

ρ2

3 + 2n

( ρ
R

)n

Zn(ξ, η). (39)

Substituting (36),(37),(38) and (39) into (35), we obtain the following system of alge-
braic equations:

Z4n +
R2

3 + 2n

(
a0 +

n+ 2

2µ− p
q0

)
Zn +

R2

3 + 2n

(
a+

n+ 2

2µ− p
Q

)
Yn

+
2RQ1

2µ− p

[
∂

∂ρ
ϕ(1)
n (is1ρ)

]
ρ=R

Z1n

s21
− λ0R

µ0s23

[
∂

∂ρ
ϕ(1)
n (is3ρ)

]
ρ=R

Z2n = h+1n,

−(n+ 1)Z4n +
nR2

3 + 2n

[
a0 −

n+ 1

2µ− p
q0

]
Zn +

nR2

3 + 2n

[
a− n+ 1

2µ− p
Q

]
Yn

+
n(n+ 1)λ0

µ0s23
Z2n −

2n(n+ 1)

2µ− p

Q1

s21
Z1n = h+2n,

Z3n = h+3n,

(40)
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−(k5 + k6)

[
n(n− 1)

k2R
k3Yn +R

k

k1

(
∂2

∂ρ2
ϕ(1)
n (is1ρ)

)
ρ=R

Z1n

]

−k4k
k1

Rs21Z1n − c(k5 + k6)n(n+ 1)

[(
∂

∂ρ
− 1

ρ

)
ϕ(1)
n (is2ρ)

]
ρ=R

Y3n = h+4n,

(k5 + k6)n(n+ 1)

[
(n− 1)k3
k2R

Yn +
k

k1

(
∂

∂ρ
− 1

ρ

)
ϕ(1)
n (is1ρ)Z1n

]
ρ=R

+n(n+ 1)

[
c(k5 + k6)

(
R
∂2

∂ρ2
+

∂

∂ρ
− 1

ρ

)
ϕ
(1)
n (is2ρ) + k5R

]
ρ=R

Y3n = h+5n,

−k5n(n+ 1)

[(
∂

∂ρ
− 1

ρ

)
ϕ
(1)
n (is2ρ)

]
ρ=R

Y4n = h+6n, h+60 = 0, h+50 = 0,

Zn + Z2n +
A

s21 − s23
Z1n = h+7n, Yn + Z1n = h+8n.

By virtue of Theorem 1, we get the following result: the system (40) for n ≥ 0 is
uniquely solvable.

6. Solution of the BVP 2

Quite similarly as above, we can investigate Problem 2 for an elastic space with a
spherical cavity.

Let us assume that functions ϑ, ϑj, j = 1, 2, φj, j = 3, 4, ψ, Ω

and
3∑

k=1

∂Ψk

∂Sk(x)
are sought in the form

ϑ(x) =
∞∑
n=0

(
R

ρ

)n+1

Yn(ξ, η), ϑ1(x) =
∞∑
n=0

ϕm(is1ρ)Z1n(ξ, η),

ψ3(x) =
∞∑
n=0

ϕm(is3ρ)Z2n(ξ, η), φj(x) =
∞∑

m=0

ϕm(is2ρ)Yjm(ξ, η), j = 3, 4,

Ω =
∞∑
n=0

(
R

ρ

)n+1

Z4n(ξ, η),
3∑

k=1

∂Ψk

∂Sk(x)
=

∞∑
n=0

(
R

ρ

)n+1

Z3n(ξ, η),

ψ =
∞∑
n=0

(
R

ρ

)n+1

Zn(ξ, η), ρ > R,

(41)

where

Φn(λkρ) =

√
RH

(1)

n+ 1
2

(λkρ)

√
ρH

(1)

n+ 1
2

(λkR)
k = 1, 2,
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H
(1)

n+ 1
2

(λρ) is Hankel’s function.

The particular solutions of equations ∆ϑ0 = ϑ and ∆ψ0 = ψ have the following
form

ϑ0(x) =
ρ2

2

∞∑
n=0

Yn(ϑ, η)

(1− 2n)

(
R

ρ

)n+1

, ρ > R,

ψ0(x) =
ρ2

2

∞∑
n=0

Zn

(1− 2n)

(
R

ρ

)n+1

, ρ > R.

(42)

Substituting (41) and (42) into (35), passing to the limit as ρ→ R, for the determina-
tion of unknown functions we arrive at the following system of algebraic equations:

Z4n +
R2

1− 2n

(
a0 +

1− n

2µ− p
q0

)
Zn +

R2

1− 2n

(
a+

1− n

2µ− p
Q

)
Yn

−λ0R

µ0s23

[
∂

∂ρ
ϕn(is3ρ)

]
ρ=R

Z2n +
2RQ1

2µ− p

[
∂

∂ρ
ϕn(is1ρ)

]
ρ=R

Z1n

s21
= h−1n,

nZ4n −
R2(n+ 1)Zn

(1− 2n)

[
a0 +

q0n

2µ− p

]
− R2(n+ 1)Yn

(1− 2n)

[
a+

nQ

2µ− p

]

+
n(n+ 1)

µ0s23
Z2n −

2n(n+ 1)Q1

(2µ− p)s21
Z1n = h−2n, Z3n = h−3n,

−(k5 + k6)(n+ 1)(n+ 2)

Rk2
k3Yn −R

k(k5 + k6)

k1

[
∂2

∂ρ2
ϕn(is1ρ)Z1n

]
ρ=R

−kk4
k1

Rs21Z1n − c(k5 + k6)n(n+ 1)

[(
∂

∂ρ
− 1

ρ

)
ϕn(is2ρ)

]
ρ=R

Y3n = h−4n,

(k5 + k6)n(n+ 1)

[
n+ 2

k2R
k3Yn +

k

k1

(
∂

∂ρ
− 1

ρ

)
ϕn(is1ρ)Z1n

]
ρ=R

+n(n+ 1)

[
c(k5 + k6)

(
R
∂2

∂ρ2
+

∂

∂ρ
− 1

ρ

)
ϕn(is2ρ) + k5R

]
ρ=R

Y3n = h−5n,

−k5n(n+ 1)

[(
∂

∂ρ
− 1

ρ

)
ϕn(is2ρ)

]
ρ=R

Y4n = h−6n, h−50 = 0, h−60 = 0,

Zn + Z2n +
A

s21 − s23
Z1n = h−7n, Yn + Z1n = h−8n. (43)

According to Theorem 1 we conclude that system (43) for n ≥ 0 is uniquely solvable.

7. Conclusions

The main results of this work can be formulated as follows:
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1. The general solution of the system of equations in the considered theory is pre-
sented by means of elementary (harmonic, meta-harmonic and bi-harmonic) functions.

2. Analytical (exact) solutions of the Neumann type BVPs are obtained for the
sphere with voids and microtemperatures.

3. The obtained solution is represented as absolutely and uniformly convergent
series.
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