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Abstract. In this paper the 2D linear theory of steady vibrations of thermoelastic materials
with voids is considered. The representation of common decision of the system of equations
in the considered theory is obtained. The fundamental and some other matrices of singular
solutions are constructed in terms of elementary (meta-harmonic) functions. Some basic
properties of single-layer and double-layer potentials are also established.
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1. Introduction

In this paper the 2D linear theory of steady vibrations for thermoelastic materials with
voids is considered. The linear theory of thermoelastic porous materials with voids is the
generalization of the classical theory of elasticity. This theory is used for investigated various
types of geological and biological materials for which classical theory of elasticity is not
adequate. Porous materials with voids have applications in many fields of engineering, such
as the petroleum industry, material science and biology. This theory enables us to analyze
the behaviour of elastic porous materials which can be found in engineering, such as rock and
soil, bone, the manufactured porous materials. The voids are assumed to contain nothing of
mechanical or energetic significance.

The non-linear version of elastic materials with voids was proposed by Nunziato and
Cowin [1] and the linear version was developed by Cowin and Nunziato [2] to study math-
ematically the mechanical behaviour of porous solids. Another version of the linear theory,
called the dilatation theory of elasticity, was independently proposed by Markov [3]. Ieşan
in [4] established a variational theory for thermoelastic materials with voids. In [5,6] Ciar-
letta and Scalia studied a linear thermoelastic theory of materials with voids, and established
uniqueness and reciprocal theorems. In [7] Ieşan and Quintanilla have developed the theory of
Nunziato and Cowin for thermoelastic deformable materials with double porosity structure.

Many problem are investigated by several researchers in the elastic materials with the
microstructure . Some of these results are presented in [8-17] and in references therein.

In this paper the 2D linear theory of steady vibrations of thermoelastic materials with
voids is considered. The representation of common decision of the system of equations in the
considered theory is obtained. The fundamental and some other matrixes of singular solutions
are constructed in terms of elementary (meta-harmonic) functions. Some basic properties of
single-layer and double-layer potentials are also established

2. Basic equations

Let x = (x1, x2) be a point of the Euclidean 2D dimensional space E2. ∂x :=
(

∂
∂x1

, ∂
∂x2

)
.

LetD be a bounded 2D domain (surrounded by the curve S.) Let us assume that the isotropic
material with voids occupies the domain D.
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The basic system of equations of motion in the linear theory thermoelasticity with voids,
for isotropic materials can be written as [4]

µ∆u′ + (λ+ µ)graddivu′ + bgradφ′ − βgradθ′ + ϱf′ = ϱ
∂2u′

∂t2
,

α∆φ′ − bdivu′ − ξφ+mθ′ + ϱl = ϱκ
∂2φ′

∂t2
,

k∆θ′ − βT0
∂

∂t
divu′ − aT0

∂θ′

∂t
−mT0

∂φ′

∂t
= −ϱs,

(1)

where u′ := (u′1, u
′
2)

⊤ is the displacement vector in a solid, φ is the change of volume fraction,
θ is the temperature, λ, µ, β, α, ξ, m, a, k are constitutive coefficients, ϱ is the density, f
is the body force vector, l is the extrinsic equilibrated body force and k is the equilibrated
inertia, s is the extrinsic heat supply, T0 = const > 0 is the absolute temperature in the
reference state, ∆ is the 2D Laplace operator. The superscript (.)⊤ denotes transposition
operation.

As in the classical theory of thermoelasticity, we assume that u′, φ′, θ′, f ′ to have a har-
monic time variation, that is

u′ = Re[u(x, ω)exp(−iωt)] φ′ = Re[φ(x, ω)exp(−iωt)],

f ′ = Re[φ(x, ω)exp(−iωt)], θ′ = Re[θ(x, ω)exp(−iωt)]

then from (1) we obtain the following system of equations of steady vibrations in the linear
theory of thermoelasticity for isotropic materials with voids

µ∆u+ (λ+ µ)graddivu+ bgradφ− βgradθ + ϱf = −ϱω2u,

α∆φ− bdivu− ξφ+mθ + ϱl = −ϱκω2φ,

k∆θ + iωβT0divu+ iωaT0θ + iωmT0φ = −ϱs

(2)

where Re[f ] denotes the real part of f and ω is a oscillation frequency.

Let us consider the basic homogeneous system of equations of steady vibrations in the
linear theory of thermoelasticity for isotropic materials with voids

(µ∆+ ϱω2)u+ (λ+ µ)graddivu+ bgradφ− βgradθ = 0,

(α∆+ b0)φ− bdivu+mθ = 0,

(k∆+ b1)θ + b2divu+ b3φ = 0.

(3)

where

b0 = κϱω2 − ς, b1 = aT0iω, b2 = βT0iω, b3 = mT0iω

We introduce the matrix differential operator

A(∂x, ω) =∥ Alj(∂x) ∥4×4, l, j = 1, 2, 3, 4,
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where

Alj := δlj(µ∆+ ρω2) + (λ+ µ)
∂2

∂xl∂xj
, l, j = 1, 2,

Aj3 := b
∂

∂xj
, Aj4 := −β

∂

∂xj
, j = 1, 2,

A3j := −b
∂

∂xj
j = 1, 2, A33 := α∆+ b0,

A34 := m, A4j := b2
∂

∂xj
, A43 = b3, A44 = k∆+ b1,

δαγ is the Kronecker symbol.

It easily seen that system (3) can be rewritten in the following form

A(∂x, ω)U = 0, (4)

where U = (u, φ, θ) is fourth component vector-function.

We also consider the equation

Ã(∂x, ω)U = A⊤(−∂x, ω)U = 0. (5)

where A⊤(∂x, ω) is the transpose of matrix A(∂x, ω).

Definition. A vector-function U = (u, φ, θ)⊤ defined in the domain D is called regular
if

U ∈ C2(D) ∩ C1(D)

and the vector U additionally should satisfy the following conditions at the infinity:

U(x) = o(1),
∂U

∂xj
= (O|x|−2), |x|2 = x21 + x22 >> 1, j = 1, 2.

3. The basic fundamental matrix

In this section we will construct the fundamental solution of the system (4) explicitly,
which consists of four metaharmonic functions. For this we introduce the matrix differential
operator B(∂x, ω) consisting of cofactors of elements of the matrix A⊤ divided on kµµ0α:

B(∂x, ω) =
1

kµµ0α
∥ Blj(∂x) ∥5×5, l, j = 1, 2, 3, 4,

where

Bij = δijkµ0α(∆ + λ2
1)(∆ + λ2

2)(∆ + λ2
3)−A12

∂2

∂xi∂xj
,

A12 = (k∆+ b1)[(λ+ µ)(α∆+ b0) + b2]

−m[b3(λ+ µ)− bb2] + β[bb3 + b2(α∆+ b0)],
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Bj3 = −µ(∆ + λ2
4)[b(k∆+ b1) + βb3]

∂

∂xj
, j = 1, 2,

Bj4 = µ(∆ + λ2
4)[β(α∆+ b0) +mb]

∂

∂xj
, j = 1, 2,

B3j = µ(∆ + λ2
4)[b(k∆+ b1) +mb2]

∂

∂xj
, j = 1, 2,

B33 = µ(∆ + λ2
4)[(k∆+ b1)(µ0∆+ ρω2) + b2β∆],

B34 = −µ(∆ + λ2
4)[(mµ0 − bβ)∆ +mρω2],

B4j = −µ(∆ + λ2
4)[b2(α∆+ b0)2 + bb3]

∂

∂xj
, j = 1, 2,

B43 = −µ(∆ + λ2
4)[b3(µ0∆+ ρω2)− bb2∆],

B44 = µ(∆ + λ2
4)[(α∆+ b0)(µ0∆+ ρω2) + b2∆].

Substituting U = BΨ into (4) we obtain

µ0kαµ(∆ + λ2
1)(∆ + λ2

2)(∆ + λ2
3)(∆ + λ2

4)Ψ = 0, (6)

where λ2
4 =

ρω2

µ
and λ2

j , j = 1, 2, 3 are roots of the equation

kαµ0ξ
3 − a1ξ

2 + a2ξ − ϱω2(b0b1 −mb3) = 0,

a1 = µ0(αb1 + kb0) + αkϱω2 + αβb2 + kb2,

a2 = µ0(b0b1 −mb3) + (αb1 + kb0)ϱω
2 + b1b

2 +mbb2 + β(bb3 + b0b2).

We assume that the values λ2
j are distinct and different from zero.

The solution of the equation (6) can be represented as

Ψ = −
4∑

j=1

djφj , (7)

where

(∆ + λ2
m)φm = 0,

φm =
π

2i
H

(1)
0 (λmr),

d1 =
1

(λ2
1 − λ2

2)(λ
2
1 − λ2

3)(λ
2
1 − λ2

4)
, d2 =

1

(λ2
2 − λ2

1)(λ
2
2 − λ2

3)(λ
2
2 − λ2

4)
,

d3 =
1

(λ2
3 − λ2

1)(λ
2
3 − λ2

2)(λ
2
3 − λ2

4)
, d4 =

1

(λ2
4 − λ2

2)(λ
2
4 − λ2

2)(λ
2
4 − λ2

3)
,
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H
(1)
0 (λmr) is Hankel’s function of the first kind with the index 0

H
(1)
0 (λmr) =

2i

π
J0(λmr) ln r +

2i

π

(
ln

λm

2
+ C − iπ

2

)
J0(λmr)

−2i

π

∞∑
k=1

(−1)k

(k!)2

(
λmr

2

)2k (1

k
+

1

k − 1
+ ...+ 1

)
, m = 1, .., 4,

J0(λmr) =
∞∑
k=0

(−1)k

(k!)2

(
λmr

2

)2k

, r2 = (x1 − y1)
2 + (x2 − y2)

2,

4∑
j=1

dj = 0,
4∑

j=1
djλ

2
j = 0,

4∑
j=1

djλ
4
j = 0,

4∑
j=1

djλ
6
j = 1, dj =

4∏
m=1
j ̸=m

1

λ2
j − λ2

m

.

Substituting (7) into U = BΨ, we obtain the matrix of fundamental solutions Γ(x-y) for the
equation (4)

Γ(x-y, ω) =∥ Γkj(x-y) ∥4×4 (8)

where

Γlm =
δlm
µ

φ4 +
∂2

∂xl∂xm

 φ4

µλ2
4

+
1

µ0αk

3∑
j=1

dj(λ
2
j − λ2

4)mjφj

 , l,m = 1, 2,

mj = αb1 + kb0 − kαλ2
j −

b0b1 −mb3
λ2
j

,

Γi3 =
1

µ0αk

4∑
j=1

dj(λ
2
4 − λ2

j )[−bkλ2
j + βb3 + bb1]

∂φj

∂xi
, i = 1, 2,

Γi4 = − 1

µ0αk

4∑
j=1

dj(λ
2
4 − λ2

j )[−λ2
jαβ +mb+ βb0]

∂φj

∂xi
,

Γ3i = − 1

µ0αk

4∑
j=1

dj(λ
2
4 − λ2

j )[−bkλ2
j +mb2 + bb1]

∂φj

∂xi
,

Γ33 = − 1

µ0αk

4∑
j=1

dj(λ
2
4 − λ2

j ){λ4
jµ0k − λ2

j [kρω
2 + b1µ0 + b2β] + b1ρω

2}∂φj

∂xj
,

Γ34 =
1

µ0αk

4∑
j=1

dj(λ
2
4 − λ2

j )[mϱω2 − (mµ0 − bβ)λ2
j ]φj ,
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Γ4i =
1

µ0αk

4∑
j=1

dj(λ
2
4 − λ2

j )[−λ2
jαb2 + bb3 + b2b0]

∂φj

∂xi
,

Γ43 =
1

µ0αk

4∑
j=1

dj(λ
2
4 − λ2

j )[b3ϱω
2 − (b3µ0 − bb2)λ

2
j ]φj ,

Γ44 = − 1

µ0αk

4∑
j=1

dj(λ
2
4 − λ2

j ){λ4
jµ0α− λ2

j [αρω
2 + b0µ0 + b2] + b0ρω

2}φj .

Clearly

π

2i
H

(1)
0 (λr) = ln |x− y| − λ2

4
|x− y|2 ln |x− y|+ const+O(|x− y|2).

It is evident that all elements of Γ(x-y, ω) are single-valued functions on the whole plane and
they have a logarithmic singularity at most.

By applying the methods, as in the classical theory of elasticity, we can directly prove
the following: (for details see in [18])

Theorem 1. The element of the matrix Γ(x-y, ω) has a logarithmic singularity as x →
y and each column of the matrix Γ(x-y, ω), considered as a vector, is a solution of the system
(4) at every point x if x ̸= y.

Let us we consider the matrix Γ̃(x) := Γ⊤(−x). The following basic properties of Γ̃(x)
may be easily verified:

Theorem 2. Each column of the matrix Γ̃(x-y, ω), considered as a vector, satisfies the
associated system Ã(∂x)Γ̃(x-y, ω) = 0, at every point x if x ̸= y and the elements of the
matrix Γ̃(x-y, ω) have a logarithmic singularity as x → y.

4. Singular matrix of solutions

Let P (∂x,n) be the stress operator in the linear theory of thermoelasticity for materials
with voids and P (∂x,n)U is the stress vector which acts on an element of the arc with the
normal n = (n1, n2)

P (∂x,n)U = T (∂x,n)u+ n(bφ− βθ), (9)

where T (∂x,n) is the stress operator in the classical theory of elasticity

T (∂x,n) =


µ

∂

∂n
+ (λ+ µ)n1

∂

∂x1
(λ+ µ)n1

∂

∂x2
+ µ

∂

∂s

(λ+ µ)n2
∂

∂x1
− µ

∂

∂s
µ

∂

∂n
+ (λ+ µ)n2

∂

∂x2

 ,

∂

∂n
= n1

∂

∂x1
+ n2

∂

∂x2
,

∂

∂s
= n2

∂

∂x1
− n1

∂

∂x2
.
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Let us introduce the following matrix differential operators of dimension 4x4

R(∂x,n) =



T11(∂x,n) T12(∂x,n) bn1 − βn1

T21(∂x,n) T22(∂x,n) bn2 − βn2

0 0 α
∂

∂n
0

0 0 0 k
∂

∂n


,

R̃(∂x,n) =



T11(∂x,n) T12(∂x,n) bn1 − b2n1

T21(∂x,n) T22(∂x,n) bn2 − b2n2

0 0 α
∂

∂n
0

0 0 0 k
∂

∂n


.

Applying the operator R(∂x,n) to the matrix Γ(x-y, ω), we obtain

R(∂x,n)Γ(x− y, ω) = ∥Rpq∥4×4,

where the elements Rpq are the following

R11 =
∂φ4

∂n
+

[
−ρω2n1 + 2µ

∂

∂s

∂

∂x2

]
∂Ψ11

∂x1
,

Ψ11 =
φ4

λ2
4

− 1

µ0αk

4∑
j=1

dj(λ
2
4 − λ2

j )mjφj ,

R22 =
∂φ4

∂n
−
[
ρω2n2 + 2µ

∂

∂s

∂

∂x1

]
∂Ψ11

∂x2
,

R12 =
∂φ4

∂s
+

[
−ρω2n1 + 2µ

∂

∂s

∂

∂x2

]
∂Ψ11

∂x2
,

R21 = −∂φ4

∂s
−
[
ρω2n2 + 2µ

∂

∂s

∂

∂x1

]
∂Ψ11

∂x1
,

R3j = α
∂Γ3j

∂n
, R4j = k

∂Γ4j

∂n
, R33 = α

∂Γ33

∂n
, R34 = α

∂Γ34

∂n
,

R43 = k
∂Γ43

∂n
, R44 = k

∂Γ44

∂n
,
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R13 =
µ

µ0αk

[
−n1λ

2
4 + 2

∂

∂s

∂

∂x2

] 4∑
j=1

dj(λ
2
4 − λ2

j )[−bkλ2
j + βb3 + bb1]φj ,

R23 =
µ

µ0αk

[
−n2λ

2
4 + 2

∂

∂s

∂

∂x1

] 4∑
j=1

dj(λ
2
4 − λ2

j )[−bkλ2
j + βb3 + bb1]φj ,

R14 =
µ

µ0αk

[
n1λ

2
4 − 2

∂

∂s

∂

∂x2

] 4∑
j=1

dj(λ
2
4 − λ2

j )[−αβλ2
j +mb+ βb0]φj ,

R24 =
µ

µ0αk

[
n2λ

2
4 + 2

∂

∂s

∂

∂x1

] 4∑
j=1

dj(λ
2
4 − λ2

j )[−αβλ2
j +mb+ βb0]φj .

Similarly, applying the operator R̃(∂x,n) to the matrix Γ̃(x-y, ω) = ΓT (y − x, ω), we
obtain

R̃(∂x,n)Γ̃(x-y, ω) = ∥R̃pq∥4×4,

where

R̃pq = Rpq, p, q = 1, 2, R̃3j = −α
∂Γj3

∂n
, R̃4j = −k

∂Γj4

∂n
,

R̃33 = α
∂Γ33

∂n
, R̃34 = α

∂Γ43

∂n
, R̃44 = k

∂Γ44

∂n
, R̃43 = k

∂Γ34

∂n
,

R̃13 =
µ

µ0αk

[
n1λ

2
4 + 2

∂

∂s

∂

∂x2

] 4∑
j=1

dj(λ
2
4 − λ2

j )[−kbλ2
j + bb1 +mb2]φj ,

R̃23 =
µ

µ0αk

[
n2λ

2
4 − 2

∂

∂s

∂

∂x1

] 4∑
j=1

dj(λ
2
4 − λ2

j )[−kbλ2
j + bb1 +mb2]φj ,

R̃14 =
µ

µ0αk

[
n1λ

2
4 − 2

∂

∂s

∂

∂x2

] 4∑
j=1

dj(λ
2
4 − λ2

j )[−αb2λ
2
j + bb3 + b0b2]φj ,

R̃24 =
µ

µ0αk

[
n2λ

2
4 + 2

∂

∂s

∂

∂x1

] 4∑
j=1

dj(λ
2
4 − λ2

j )[−αb2λ
2
j + bb3 + b0b2]φj .

Let [R(∂y,n)Γ(y-x, ω)]
⊤, be the matrix which we get from [R(∂x,n)Γ(x-y, ω)] by transpo-

sition of the columns and rows and the variables x and y (analogously
[
R̃(∂y,n)Γ̃(y-x, ω)

]⊤
).

Let us introduce the following single-layer and double-layer potentials :

the vector-functions defined by the equalities

V(x;g) =
1

π

∫
S

Γ(x− y, ω)g(y)dyS,
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Ṽ (x;g) =
1

π

∫
S

Γ⊤(y− x, ω)g(y)dyS

will be called single- layer potentials, while the vector-functions defined by the equalities

W(x;h) =
1

π

∫
S

[R(∂y,n)Γ(y− x, ω)]⊤ h(y)dyS,

W̃ (x;h) =
1

π

∫
S

[
R̃(∂z,n)Γ

⊤(y− x, ω)
]⊤

h(y)dyS

will be called double layer potentials. Here g and h are the continuous (or Hölder continuous)
vectors and S is a closed Lyapunov curve.

By applying the methods, as in the classical theory of elasticity, we can state the follow-
ing:(for details see in [18]).

Theorem 3. The vectors Ṽ (x;g) and W(x;h) are the solutions of the system

Ã(∂x)U = 0 at any point x and x ̸= y. The vectors V(x;g) and W̃ (x;h) are the so-
lutions of the system A(∂x)U = 0at any point x and x ̸= y. The elements of the matrices

[R(∂y,n)Γ(y− xω)]⊤ and
[
R̃(∂y,n)Γ

⊤(x− y)ω
]⊤

contain a singular part, which is inte-

grable in the sense of the Cauchy principal value.
Remark. By using the above-mentioned method, it is possible to construct explicitly

the fundamental and singular matrices of solutions of the systems of equations in the modern
linear theories of elasticity, thermoelasticity and poroelasticity.

5. A representation of general solutions

Theorem 4. If U := (u, φ, θ) is a regular solution of the homogeneous system (3) then
u, divu, φ and θ satisfy the conditions

(∆ + λ2
1)(∆ + λ2

2)(∆ + λ2
3)(∆ + λ2

4)u = 0,

(∆ + λ2
1)(∆ + λ2

2)(∆ + λ2
3)Ψ = 0,

(10)

where Ψ = (divu, φ, θ).
Proof. Let U = (u, φ, θ) be a regular solution of the equation (3). Upon taking the

divergence operation, from (3) we get
(µ0∆+ ϱω2)divu+ b∆φ− β∆θ = 0,

(α∆+ b0)φ− bdivu+mθ = 0,

(k∆+ b1)θ + b2divu+ b3φ = 0.

(11)

Rewrite the latter system as follows

D(∆)Ψ :=

 µ0∆+ ϱω2 b∆ − β∆
−b α∆+ b0 m
b2 b3 k∆+ b1

Ψ = 0,

By the direct evaluation, we get

detD = kµ0α(∆ + λ2
1)(∆ + λ2

2)(∆ + λ2
3).
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Clearly, from the system (11) it follows that
(∆ + λ2

1)(∆ + λ2
2)(∆ + λ2

3)divu = 0,

(∆ + λ2
1)(∆ + λ2

2)(∆ + λ2
3)φ = 0,

(∆ + λ2
1)(∆ + λ2

2)(∆ + λ2
3)θ = 0,

(12)

Further, applying the operator (∆+λ2
1)(∆+λ2

2)(∆+λ2
3) to equation (3)1, and using the last

relations we obtain
(∆ + λ2

1)(∆ + λ2
2)(∆ + λ2

3)(∆ + λ2
4)u = 0, (13)

where

λ2
4 =

ϱω2

µ
.

The last formulas prove the theorem.
Theorem 5. The regular solution U = (u, φ, θ) of the system (3) admits in the domain

of regularity a representation

U = (
1
u+

2
u, φ, θ), (14)

where
1
u, and

2
u are the regular vectors, satisfying the conditions

(∆ + λ2
1)(∆ + λ2

2)(∆ + λ2
3)

1
u = 0, rot

1
u = 0,

(∆ + λ2
4)

2
u = 0, div

2
u = 0

and the functions divu, φ, θ can be replaced by the functions ϑj , j = 1, 2, 3

divu =
3∑

j=1
Ajϑj , φ =

3∑
j=1

Bjϑj , θ =
3∑

j=1
ϑj , (15)

Aj =
(kλ2

j − b1)(b0 − αλ2
j ) +mb3

b2(b0 − αλ2
j ) + bb3

,

Bj =
b(kλ2

j − b1)−mb2

b2(b0 − αλ2
j ) + bb3

,

respectively, where ϑj is the solution of the scalar equation

(∆ + λ2
j )ϑj = 0.

Proof. It is easily checked that the expressions (15) satisfy the Eqs: (3)2 and (3)3.
Let U = (u, φ, ϑ) be a regular solution of system (3). Using the identity

∆w = graddivw− rotrotw, (16)

from Eq. (3) we obtain

u = − µ0

ρω2
graddivu− 1

ρω2
grad(bφ− βθ) +

µ

ρω2
rotrotu,
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Let
1
u := − µ0

ρω2
graddivu− 1

ρω2
grad(bφ− βθ), (17)

2
u :=

µ

ρω2
rotrotu. (18)

Clearly

u =
1
u+

2
u, rot

1
u = 0, div

2
u = 0. (19)

Using the identity ∆
2
u = −rotrot

2
u, from (18) we obtain

(∆ + λ2
4)

2
u = 0. (20)

Keeping in mind (15) from (17) we obtain

1
u = −grad

3∑
j=1

Aj

λ2
j

ϑj.

Thus we have the following representation of the general solution of system (3)

u = −grad
3∑

j=1

Aj

λ2
j

ϑj +
2
u, φ =

3∑
j=1

Bjϑj , θ =
3∑

j=1

ϑj ,

Aj =
(kλ2

j − b1)(b0 − αλ2
j ) +mb3

b2(b0 − αλ2
j ) + bb3

, Bj =
b(kλ2

j − b1)−mb2

b2(b0 − αλ2
j ) + bb3

.

(21)

6. Conclusions

In this paper the 2D linear theory of steady vibrations of thermoelasticity for materials
with voids is considered and the following results are obtained:

1. The fundamental and singular matrices of solutions of the system of equations of steady
vibrations in the 2D linear theory of thermoelasticity for isotropic materials with voids are
constructed explicitly in terms of elementary (meta-harmonic) functions.

2. Some basic properties for single and double layer potentials are established.
3. The general solution of the system of steady vibrations in the linear theory of ther-

moelasticity for isotropic materials with voids is constructed by means four arbitrary meta-
harmonic functions.
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4. Ieşan D. A theory of thermoelastic materials with voids. Acta Mechanica, 60 (1986), 67-89.



14 Bitsadze L.

5. Ciarletta M., Scalia A. On uniqueness and reciprocity in linear thermoelasticity of materials
with voids. J. Elasticity, 32 (1993), 1-17.

6. Ciarletta M., Scalia A. Results and applications in thermoelasticity of materials with voids. Le
Matematiche, XLVI (1991), 85-96.
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