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SOLUTION OF THE BOUNDARY PROBLEMS OF
THERMOPOROELASTOSTATICS
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Abstract. In the present work, using absolutely and uniformly convergent series, the bound-
ary value problems of thermoelastostatics for an elastic circle with double porosity are solved
explicitly. The question on the uniqueness of a solution of the problem is investigated.
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Introduction

Recently the linear theory of thermoelasticity for materials with double porosity has
been expanding and developing in different directions. For example, the basic equations of
the one-and two-temperature thermohydromechanical coupling theories for elastic materials
with double porosity were presented in [1-4]. In [5] the linear theory of thermoelasticity
for solids with double porosity is considered. The fundamental solutions for the systems
of steady vibrations, quasi-static and equalibrium equations are constructed by means of
elementary functions. The fundamental solutions in the theory of elasticity for materials
with single porosity were constructed in [6,7]. Iesan and Quintanilla [8] presented the theory
of thermoelastic materials with double porosity structure.
Along with theoretical investigations of thermoporoelasticity problems, the development of
methods for their solution is of great interest. From the point of view of applications, actual
construction of solutions of problems in explicit form, which makes it possible to perform a
numerical analysis of the problem under study. Various methods for solving boundary-value
problems of statics for elastic bodies with double pores, are considered in [9-11].
In the present work, using absolutely and uniformly convergent series, the boundary value
problems of thermoelastostatics for an elastic circle with double porosity are solved explicitly.
The question on the uniqueness of a solution of the problem is investigated.

Basic equations and boundary value problems

We consider an isotropic elastic material with dual porosity occupying a circle D in a
radius R and the boundary S. Equilibrium system of equations of thermoelasticity theory for
isotropic materials dual porosity can be written as follows [5]:

µ∆u + (λ+ µ)graddivu− grad(β1p1 + β2p2 + γ0u3) = 0, (1)

(k1∆− γ)p1 + γp2 = 0,

γp1 + (k2∆− γ)p2 = 0,

∆u3 = 0,

(2)

where u(x) = (u1(x), u2(x)) is the displacement vector in a solid; p1(x) and p2(x) are the
pressures in cracks and in pores, respectively; u3(x) is the temperature measured from some
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constant absolute temperature T0(T0 > 0). U(x) = (u1, u2, p1, p2, u3) is regular solution
systems (1),(2); U(x) ∈ C2(D)

⋂
C1(D).

λ, µ, k1, k2, β1, β2, γ and γ0 are the well-known thermoelastic and physical coefficients, γ0 =
α(3λ + 2µ), α is the coefficient of linear thermal expansion; ∆ is the Laplacion operator,
x ∈ D.
We will suppose that the following assumptions on the constitutive coefficients hold true:
λ, µ, kj , γ > 0, j = 1, 2.

The problems

Find a regular solution U(x) to system (1) and (2) for x ∈ D satisfying the following
boundary conditions on the circumference S:

u(z) = f((z), p1(z) = f3(z), p2(z) = f4(z), u3(z) = f5(z) − in the BVP I; (3)

P(∂z,n)U(z) = f(z), ∂np1(z) = f3(z), ∂np2(z) = f4(z), ∂nu3(z) = f5(z)

−in the BVP II,
(4)

where f(z) = (f1(z), f2(z)); fl(z) are known functions, l = 1, 2, 3, 4, 5; n(z) is the external
unit normal vector on S at z ; P(∂x,n)u is the stress vector in the considered theory

P(∂x,n)U(x) = T(∂x,n)u(x)− n(x)[β1p1(x) + β2p2(x) + γ0u3(x)], (5)

T(∂x,n)u is the stress vector in the classical theory of elasticity [9]

T(∂x,n)u(x) = µ∂nu(x) + λndivu(x) + µ

2∑
i=1

ni(x)gradui(x).

Separately we will study the following problems:
1. Find in a circle D solution u(x) of equation (1), if on the circumference S there are

the values: of the vector u(z) (problem A1), those of the vector P(∂z,n)U(z) (problem A2);
2. Find in the circle D solutions p1(x), p2(x) and u3 of the system of equations (2), if on

the circumference S there are the values of the functions p1, p2 and u3 (problem B1) or those
of the derivatives ∂np1, ∂np2 and ∂nu3 (problem B2).

Thus the above-formulated BVPs of poroelastostatics can be considered as a union of two
problems: I– (A1, B1), II– (A2, B2).

The uniqueness theorems

For the regular solution U(x) = (u1, u2, p1, p2, u3) Green’s formulas have the form [12,16]:∫
D

[E(u,u)− (β1p1 + β2p2 + γ0u3)divu]dx =
∫
S

uP(∂y, n)UdyS; (6)

∫
D

{
k1(gradp1)2 + k2(gradp2)2 + (gradu3)2 + γ(p1 − p2)2

}
dx =

∫
S

{k1p1∂np1 + k2p2∂np2 + u3∂nu3}dyS,

(7)
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where
E(u,u) = (λ+ µ)(divu)2 + µ(∂x1u1 − ∂x2u2)2 + µ(∂x2u1 + ∂x1u2)2.

For positive definiteness of the potential energy the inequalities λ > 0, µ > 0 are necessary
and sufficient [13].
Let p1, p2 and u3 be difference of two arbitrary solutions of problem B1 (or B2). Then
p1, p2 and u3 satisfy the homogeneous boundary conditions, therefore the product pj ∂n pj

and u3 ∂n u3 vanishes on S (j = 1, 2). On the basis of Green’s formula (7) and by virtue of
conditions kj > 0 and γ > 0, follows that p1(x) = p2(x) = c0 = const and u3(x) = c1 = const,
where x ∈ D. In addition, by homogeneous boundary conditions in the problem B1 we have
c0 = c1 = 0.
The following theorems are true

Theorem 1. The problem B1 admits at most one regular solution.
Theorem 2. The difference of two arbitrary solutions of problem B2 may differ only by

an arbitrary constant: p1(x) = p2(x) = c0 = const, u3(x) = c1 = const.
The homogeneous problems A1 and A2 for the difference u(x) have the form

µ∆v + (λ+ µ)graddivv = 0
u(z) = 0− in problem A1;
T(∂z,n)u = n(z)[β1p1 + β2p2 + γ0u3]− in problem A2.

(8)

For both problems from (6) we obtain

E(u,u)− (β1p1 + β2p2 + γ0u3)divu = 0. (9)

In the case of the problem (A1, B1), by theorem 1, we have p1(x) = p2(x) = u3(x) = 0. From
(9) we obtain E(u,u) = 0. The solution of this equation has the form [13]

u1(x) = −cx2 + α1, u2(x) = cx1 + α2, (10)

where c, α1, α2 are arbitrary constants.
For problem (A2, B2) from (9) we obtain

E(u,u)− c2divu = 0. (11)

where c2 = (β1 + β2)c0 + γ0c1. The solution of problem A2 with boundary condition (8)3 is

u(x) = ex+ q, (12)

where e =
c2

2(λ+ µ)
; q = (q1, q2), q1, q2, c0 are arbitrary constant. (12) also satisfies

(11).
The following theorems are true:
Theorem 3.The problem (A1, B1) admit at most one regular solution.
Theorem 4. The difference of two arbitrary solutions of problem (A2, B2) is the vector

U = (u1, u2, p1, p2, u3), where u1 and u2 are expressed by formulas: (12) and p1 = p2 =
c0, u3 = c1, where c0, c1 are arbitrary constants.

Solution of the Problems B1 and B2

From system (2) we can write
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(∆ + λ2
1)∆pj = 0,

whence we obtain the solution of system (2) in the form [14]

p1 = ϕ1 + k2ϕ2, p2 = ϕ1 − k1ϕ2, (13)

where
∆ϕ1 = 0, (∆ + λ2

1)ϕ2 = 0,

λ1 = i

√
γ(k1 + k2)
k1k2

= iλ0, i =
√
−1, k1 > 0, k2 > 0, γ > 0.

We have to find functions ϕj(x) and u3(x), j = 1, 2.

Problem B1

Using (13), from (3) we can write:

ϕ1(z) = d1(z), ϕ2(z) = d2(z), u3(z) = f5(z), (14)

where
d1(z) =

1
k1 + k2

[k1f3(z) + k2f4(z)],

d2(z) =
1

k1 + k2
[f3(z)− f4(z)],

(15)

functions f3, f4 and f5 are defined under the conditions (3), z ∈ S.
Suppose that d1, d2 and f5 can be expanded in Fourier series.
ϕ1 and u3 are Harmonic functions in the circle D and they seem in the form of the

following series:

ϕ1(x) =
∞∑

m=0

( ρ
R

)m
(Ym · νm(ψ)), u3(x) =

∞∑
m=0

( ρ
R

)m
(Zm · νm(ψ)), (16)

where

x = (ρ, ψ), ρ2 = x2
1 + x2

2, Ym = (Am, Bm), νm = (cosmψ, sinmψ),

A0 =
1
2π

2π∫
0

d1(θ)dθ, Am =
1
π

2π∫
0

d1(θ) cosmθdθ, Bm =
1
π

2π∫
0

d1(θ) sinmθdθ,

Zm = (Cm, Dm), C0 =
1
2π

2π∫
0

f5(θ)dθ, Cm =
1
π

2π∫
0

f5(θ) cosmθdθ,

Dm =
1
π

2π∫
0

f5(θ) sinmθdθ.

The metaharmonic function ϕ2(x) in the circle D can be represented as follows [15]

ϕ2(x) = I0(λ0ρ)E0 +
∞∑

m=1

Im(λ0ρ)(Em · νm(ψ)), (17)
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where Im(λ0ρ) is the Bessel function of an imaginary argument, Em = (Lm,Km); L0,
Lm, Km are the unknown quantities. Keeping in mind (12) and boundary condition (14)
and (15), we obtain the values of Lm and Km

L0 =
1

2πλ0I0(λ0R)

2π∫
0

d2(θ)dθ, Lm =
1

πλ0Im(λ0R)

2π∫
0

d2(θ) cos(mθ)dθ,

Km =
1

πλ0Im(λ0R)

2π∫
0

d2(θ) sinmθdθ,

Using formulas (13), (16) and (17), we can find values of the functions p1(x), p2(x) and
u3(x) for x ∈ D.

Problem B2

Using (13), from (4) we can write:

∂Rϕ1(z) = h1(z), ∂Rϕ2(z) = h2(z), ∂Ru3(z) = f5(z), (18)

where h1 and h2 are defined by formulas (15); functions f3, f4 and f5 are defined under the
conditions (4), z ∈ S.

We come to the Neumann problem for the functions ϕ1, ϕ2 and u3. Given the
properties of harmonic functions ϕ1 and u3, for functions h1 and f5 have∫

S

h1(y)dyS = 0;
∫
S

f5(y)dyS = 0.

Neumann solution for ϕ1 and u3 represented by the series

ϕ1(x) = c1 +
∞∑

m=1

R

m

( ρ
R

)m
(Y1m · νm(ψ)), (19)

u3(x) = c2 +
∞∑

m=1

R

m

( ρ
R

)m
(Z1m · νm(ψ)), (20)

where c1 and c2 are arbitrary constants; Y1m = (A1m, B1m) and Z1m = (C1m, D1m);
A1m, B1m and C1m, D1m are the Fourier coefficients of the functions h1 and f5, respectively.

The metaharmonic function ϕ2(x) in the circle D can be written as (17), where Em =
(Lm,Km); L0, Lm, Km are the unknown quantities. Keeping in mind boundary conditions
(18), we obtain the values of L0, Lm and Km

L0 =
1

2πλ0I ′0(λ0R)

2π∫
0

h2(θ)dθ, Lm =
1

πλ0I ′m(λ0R)

2π∫
0

h2(θ) cosmθdθ, (21)

Km =
1

πλ0I ′m(λ0R)

2π∫
0

h2(θ) sinmθdθ,
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where

I ′m(ξ) =
∂Im(ξ)
∂ξ

,
∂Im(λ0ρ)

∂ρ
= λ0I

′
m(λ0ρ) I ′m(λ0R) 6= 0, m = 0, 1, 2, ....

Using formulas (13), (19),(20),(17) and (21), we can find values of the functions p1(x), p2(x)
and u3(x) for x ∈ D.

Solution of the problem A

Substitute (13) in (1)

µ∆u + (λ+ µ)graddivu = grad[aϕ1 + bϕ2 + γ0u3], (22)

where a = β1 + β2, b = k2β1 − k1β2.
Then a general solution of last equation is presented in the form

u(x) = v(x) + v0(x), (23)

where v(x) is a general solution of the equation

µ∆v + (λ+ µ)graddivv = 0 (24)

and v0(x) is a particular solution of the nonhomogeneous equation (22):

v0(x) =
1

λ+ 2µ
grad

[
aϕ0(x)− b

λ2
1

ϕ2(x) + γ0u30(x)
]
, (25)

where
∆ϕ0(x) = ϕ1(x), ∆u30(x) = u3(x); (26)

∆∆ϕ0 = ∆ϕ1 = 0, ∆∆u30 = ∆u3 = 0.
Using (16), for the solution of equations (26) in the case of problem B1 we find in the form

ϕ0(x) =
R2

4

∞∑
m=0

1
m+ 1

( ρ
R

)m+2
(Ym · νm(ψ)),

u30(x) =
R2

4

∞∑
m=0

1
m+ 1

( ρ
R

)m+2
(Zm · νm(ψ)),

(27)

where the values of Ym = (Am, Bm) and Zm = (Cm, Dm) defined in (16).
Taking into account (19) and (20), in the case of B2 task we get:

ϕ0(x) = c1 +
R3

4

∞∑
m=1

1
m(m+ 1)

( ρ
R

)m
(Y1m · νm(ψ)),

u30(x) = c2 +
R3

4

∞∑
m=1

1
m(m+ 1)

( ρ
R

)m
(Z1m · νm(ψ)),

(28)
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where c1 and c2 are arbitrary constants; the values of Y1m = (A1m, B1m) and Z1m =
(C1m, D1m) defined in (19) and (20).

Now, define the vector v(x).
A solution v(x) = (v1, v2) of homogeneous equation (24) is sought in the form

v1(x) =
∂

∂x1
(Φ1 + Φ2)−

∂Φ3

∂x2
,

v2(x) =
∂

∂x2
(Φ1 + Φ2) +

∂Φ3

∂x1
,

(29)

where Φ1, Φ2 and Φ3 are scalar functions, satisfying the following equations

∆Φ1 = 0, ∆∆Φ2 = 0, ∆∆Φ3 = 0,

(λ+ 2µ)
∂

∂x1
∆Φ2 − µ

∂

∂x2
∆Φ3 = 0,

(λ+ 2µ)
∂

∂x2
∆Φ2 + µ

∂

∂x1
∆Φ3 = 0.

(30)

In view of (30) we can represent the harmonic function Φ1, biharmonic functions Φ2 and Φ3

in the form
Φ1 =

∞∑
m=0

( ρ
R

)m
(Xm1 · νm(ψ)),

Φ2 =
∞∑

m=0

( ρ
R

)m+2
(Xm2 · νm(ψ)),

Φ3 =
λ+ 2µ
µ

∞∑
m=0

( ρ
R

)m+2
(Xm2 · sm(ψ)),

(31)

where Xmi = (Xmi1, Xmi2), i = 1, 2 are the sought two-component vectors, νk =
(cosmψ, sinmψ), sm = (− sinmψ, cosmψ).
First solve the problems A1 and A2.

Problem A1

Taking into account (23) and relying on the condition (3), we can write

v(z) = Ψ(z), (32)

where Ψ(z) = f(z)− v0(z) is the known vector; v0 is defined by formula (25), and ϕ0, u30, ϕ1

and ϕ2 by equalities (27), (16), (17), respectively.
We rewrite (32)and (29) in the form

vn(z) = Ψ(z)n, vs(z) = Ψ(z)s, (33)

vn =
∂

∂ρ
(Φ1 + Φ2)−

1
ρ

∂

∂ψ
Φ3,

vs =
1
ρ

∂

∂ψ
(Φ1 + Φ2) +

∂

∂ρ
Φ3,

(34)
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where vn(z) and vs(z), as well as Ψ(z)n and Ψ(z)s are the normal and tangent components
of the vectors v = (v1, v2) and Ψ(z), respectively; n = (n1, n2), s = (−n2, n1), n1 =
x1

ρ
, n2 =

x2

ρ
.

Expand the functions Ψn(z) andΨs(z) in Fourier series, whose Fourier coefficients are
αm = (αm1, αm2) and βm = (βm1, βm2), respectively.
In (34) we substitute (31), the results are substituted in (33), then passing to limit as ρ −→ R,
for determining the unknown values we obtain the following system of algebraic equations,
whose solution has the form

X01i =
α0iR

4
, X02i =

β0iRµ

4(λ+ 2µ)
,

Xm1i =
αmiR

m
− (βmi − αmi)R

2(λ+ µ)m
[(λ+ 3µ)m+ 2µ],

Xm2i = µ
(βmi − αmi)R

2(λ+ µ)m
, m = 1, 2, . . . ; i = 1, 2.

(35)

We substitute (35) in (31), and then in (29), we obtain the value of the vector v(x).

Problem A2

We seek the solution of equation (22) in the form (23). v0(x) is determined by the formulas
(25) and (28). Now, we seek a solution v(x) of equation (24) with the following boundary
condition:

T (∂z,n)v(z) = Ψ(z), z ∈ S,

where, taking into account (4) and (5), we write

Ψ(z) = f(z) + n(z)[aϕ2(z) + bϕ1(z) + γ0u3(x)]− T (∂z,n)v0(z)

is the known vector, Ψ = (Ψ1,Ψ2). We rewrite the equality in the form of normal and
tangential components. We get:

(λ+ µ)
[
∂vn(z)
∂ρ

]
ρ=R

+
λ

R

∂vs(z)
∂ψ

= Ψn(z),

µ

[
∂vs(z)
∂ρ

]
ρ=R

+
µ

R

∂vn(z)
∂ψ

= Ψs(z),

(36)

where

Ψn(z) = fn(z) + aϕ2(z) + bϕ1(z) + γ0u3 −
[
T

(
∂

∂z
,n

)
v0(z)

]
n

,

Ψs(z) = fs(z)−
[
T

(
∂

∂z
,n

)
v0(z)

]
s

, z ∈ S.

vn and vs are defined from (29), v0 is defined by means of formula (25), where functions
ϕ0(x) and u30 are determined by the formulas (28).

Expand the functions Ψn(z) andΨs(z) in Fourier series, whose Fourier coefficients are
γm = (γm1, γm2) and δm = (δm1, δm2), respectively.

Substituting in (31) the values of vn and vs from (29), we obtain a system of algebraic
equations. The solution of this system has the form
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X01i =
γ0iR

2

4(λ+ 2µ)
, X02i =

δ0iR
2

4(λ+ 2µ)
,

Xm1i =
R2

a3
δmi−

a4R
2

a2a3 − a1a4
(µγmi− a1δmi),

Xm2i =
a3R

2

a2a3 − a1a4
(µγmi− a1δmi),

(37)

where
a1 = µ[2(λ+ µ)m2 − (λ+ 2µ)m], a2 = 2(λ+ µ)(λ+ 3µ)m2 + (λ+ 2µ)[(3λ+ 5µ)m+ 2µ],
a3 = µm(2m− 1), a4 = (λ+ 3µ)m(2m+ 3) + 2(λ+ 2µ), m = 1, 2, . . . .
We substitute (37) in (31), and then in (29), we obtain the value of the vector v(x).

Conditions: fj ∈ C3(S) - in problem A1 and conditions: fj ∈ C2(S) in problem A2,
provide absolutely and uniformly convergence of series.
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