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SOLUTION OF THE BOUNDARY PROBLEMS OF
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Tsagareli I.

Abstract. In the present work, using absolutely and uniformly convergent series, the bound-
ary value problems of thermoelastostatics for an elastic circle with double porosity are solved
explicitly. The question on the uniqueness of a solution of the problem is investigated.
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Introduction

Recently the linear theory of thermoelasticity for materials with double porosity has
been expanding and developing in different directions. For example, the basic equations of
the one-and two-temperature thermohydromechanical coupling theories for elastic materials
with double porosity were presented in [1-4]. In [5] the linear theory of thermoelasticity
for solids with double porosity is considered. The fundamental solutions for the systems
of steady vibrations, quasi-static and equalibrium equations are constructed by means of
elementary functions. The fundamental solutions in the theory of elasticity for materials
with single porosity were constructed in [6,7]. Iesan and Quintanilla [8] presented the theory
of thermoelastic materials with double porosity structure.

Along with theoretical investigations of thermoporoelasticity problems, the development of
methods for their solution is of great interest. From the point of view of applications, actual
construction of solutions of problems in explicit form, which makes it possible to perform a
numerical analysis of the problem under study. Various methods for solving boundary-value
problems of statics for elastic bodies with double pores, are considered in [9-11].

In the present work, using absolutely and uniformly convergent series, the boundary value
problems of thermoelastostatics for an elastic circle with double porosity are solved explicitly.
The question on the uniqueness of a solution of the problem is investigated.

Basic equations and boundary value problems

We consider an isotropic elastic material with dual porosity occupying a circle D in a
radius R and the boundary S. Equilibrium system of equations of thermoelasticity theory for
isotropic materials dual porosity can be written as follows [5]:

pAu+ (A + p)graddiva — grad(Sipr + Bap2 + yous) = 0, (1)

(k1A —~v)p1 + vp2 = 0,
p1 + (k2 A —v)p2 = 0, (2)

AU3 = 0,

where u(x) = (u1(z),uz2(x)) is the displacement vector in a solid; p;(z) and pa(x) are the
pressures in cracks and in pores, respectively; us(z) is the temperature measured from some
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constant absolute temperature To(Tp > 0). U(x) = (u1,us,p1,p2,us) is regular solution
systems (1),(2); U(x) € C?(D)NCYD).

A, iy k1, ko, B1, B2,y and g are the well-known thermoelastic and physical coefficients, v =
a(3X + 2u), «a is the coefficient of linear thermal expansion; A is the Laplacion operator,
xeD.

We will suppose that the following assumptions on the constitutive coefficients hold true:
A, kij v>0, j=12

The problems

Find a regular solution U(x) to system (1) and (2) for x € D satisfying the following
boundary conditions on the circumference S:

u(z) = f((z), pi(z) = f3(z), p2(z) = fa(z), wus(z)=f5(z) —inthe BVPI,  (3)

P(0,,n)U(z) =f(z), 0Oupi1(z) = f3(2), Onp2(z) = fa(z), Onus(z)= f5(2) "
4
—in the BVP I,

where f(z) = (fi(z), f2(2z)); fi(z) are known functions, [ = 1,2,3,4,5; n(z) is the external
unit normal vector on S at z ; P(0;,n)u is the stress vector in the considered theory

P(0:,m)U(x) = T(0z, n)u(x) — n(x)[1p1(x) + G2pa(x) + y0us(x)], ()

T(0z,n)u is the stress vector in the classical theory of elasticity [9]

2
T (0, n)u(x) = po,u(x) + Andivu(x) + p Z n;(x)gradu;(x).

=1

Separately we will study the following problems:

1. Find in a circle D solution u(x) of equation (1), if on the circumference S there are
the values: of the vector u(z) (problem A;), those of the vector P(9,,n)U(z) (problem As);

2. Find in the circle D solutions p;(x), p2(x) and ug of the system of equations (2), if on
the circumference S there are the values of the functions pi, p2 and us (problem Bj) or those
of the derivatives 0p,p1, Opp2 and dyus (problem Bj).

Thus the above-formulated BVPs of poroelastostatics can be considered as a union of two
problems: I- (Al, B1), II- (AQ, Bg).

The uniqueness theorems

For the regular solution U(x) = (u1, ug, p1, p2, us) Green’s formulas have the form [12,16]:

/[E(u, u) — (Bip1 + B2p2 + yous)divulde = /uP(c’)y,n)UdyS; (6)
D S

/ {ky(gradp)® + ka(gradps)? + (gradus)® + (p1 — pa)?} dz =
D

/ {k1p10np1 + kap20np2 + u3dnus}dy S,
S
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where
E(u,u) = (A + p)(divu)® + 0z u1 — Opyin)? + p(Dpytiy + Oy uz)?.

For positive definiteness of the potential energy the inequalities A > 0, p > 0 are necessary
and sufficient [13].
Let p1,p2 and us be difference of two arbitrary solutions of problem B; (or Bz). Then
p1,p2 and ug satisfy the homogeneous boundary conditions, therefore the product p; dn p;
and uz On uz vanishes on S (j = 1,2). On the basis of Green’s formula (7) and by virtue of
conditions k; > 0 and v > 0, follows that pi(x) = p2(x) = ¢y = const and uz(z) = ¢1 = const,
where x € D. In addition, by homogeneous boundary conditions in the problem B; we have
Co = C1 = 0.
The following theorems are true

Theorem 1. The problem By admits at most one regular solution.

Theorem 2. The difference of two arbitrary solutions of problem Bo may differ only by
an arbitrary constant: p1(x) = pa(X) = cg = const, uz(x) = ¢; = const.

The homogeneous problems A; and Ay for the difference u(z) have the form

PAV + (A + p)graddivv = 0

u(z) =0—in problem Aj; (8)
T(0,,n)u = n(z)[fip1 + Bap2 + Yous] —in  problem As.

For both problems from (6) we obtain
E(u,u) — (B1p1 + B2p2 + Yous)divu = 0. (9)

In the case of the problem (Aj, By), by theorem 1, we have p;(x) = pa(x) = uz(x) = 0. From
(9) we obtain E(u,u) = 0. The solution of this equation has the form [13]

u1(x) = —cxo + a1, uz(x) = cr1 + g, (10)

where ¢, a1, o are arbitrary constants.
For problem (As, Bz) from (9) we obtain

E(u,u) — cadivu = 0. (11)
where ¢y = (1 + (2)co + Yoc1. The solution of problem Az with boundary condition (8)3 is

u(x) = ex + q, (12)

here e = —2
where e = 0t )
(11).

The following theorems are true:

Theorem 3.The problem (A1, B1) admit at most one regular solution.

Theorem 4. The difference of two arbitrary solutions of problem (Ag, Bs) is the vector
U = (uy,u2,p1,p2,u3), where uy and uy are expressed by formulas: (12) and p1 = py =

co, uz = c1, where cg,c1 are arbitrary constants.

q=1(q1,92), qi, g2, co are arbitrary constant. (12) also satisfies

Solution of the Problems B; and B,

From system (2) we can write
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(A +A})Ap; =0,

whence we obtain the solution of system (2) in the form [14]

p1 =1+ ka2, p2 =1 — kips, (13)

where

Apr =0, (A+M)p2=0,

v(k1 + k2)

A =i
LN T kR

=iy, i=+v—-1, ki1 >0, ky>0 ~>0.

We have to find functions ¢;(x) and u3(x), j=1,2.
Problem B,

Using (13), from (3) we can write:

p1(2) = di(2),  @2(z) = da(2), us(z) = f5(2), (14)

where

1
= m[klfg(Z) + k2 fa(2)], (15)

= [f3(2) — fa(2)],

functions f3, f4 and f5 are defined under the conditions (3), 2z € S.

Suppose that di,ds and f5 can be expanded in Fourier series.

1 and ws are Harmonic functions in the circle D and they seem in the form of the
following series:

m=0 m=0
where
X = (/071/})7 /72 = x% + 37%7 Y, = (Arm Bm)a Vp = (COS mw,Sinm"t/J),
27 2T 27
Ay = 1/d1(0)d9, A, = 1/d1(9) cosmbfdf, B, = 1/d1(9) sin médo,
2T T T
0 0 0
1 27 1 27
Z = (Cos D). Co= o [ (0)d8, Co = [ f3(6) cosmpas,
0 0
1 27
D,, = — / f5(0) sin mfdb
T
0

The metaharmonic function 9(x) in the circle D can be represented as follows [15]

p2(x) = Io(Aop)Eo + D Iin(3op) (B - vin (), (17)

m=1
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where I,,(Aop) is the Bessel function of an imaginary argument, E,, = (L,,, K;»); Lo,
L,,, K,, are the unknown quantities. Keeping in mind (12) and boundary condition (14)
and (15), we obtain the values of L,, and K,

21 o
1 1

Lo=-— P S |
= Srenge | 0 o Gar | O eos(m)as

0 0

1 2w
Ky=—— - |
oI (OoR) / da(0) sin mbdo
0

Using formulas (13), (16) and (17), we can find values of the functions p;(x), p2(x) and
uz(x) for x € D.

Problem B,
Using (13), from (4) we can write:
Orp1(z) = hi(z), Orypa(z) = ho(z), Orus(z) = f5(2), (18)

where hy and hy are defined by formulas (15); functions f3, f4 and f5 are defined under the
conditions (4), 2z € S.

We come to the Neumann problem for the functions ¢, 2 and us. Given the
properties of harmonic functions ¢ and us, for functions hy and f5; have

[mwd,s =0 [ fwd,s o
S S

Neumann solution for ¢; and us represented by the series

pe) =+ Y o (2)" (Vi vm(@), (19)
m=1

us() =2 Y (L) (@ v (0), (20)
m=1

where ¢; and ¢y are arbitrary constants; Y1, = (Al,,, Bl,,) and Z1,, = (C1l,,, D1,,);
Al,,, Bl,, and C1,,, D1,, are the Fourier coefficients of the functions h; and f5, respectively.

The metaharmonic function y2(x) in the circle D can be written as (17), where E,, =
(L, Kpn); Lo, Ly, K, are the unknown quantities. Keeping in mind boundary conditions
(18), we obtain the values of Lo, L, and K,

21 o
1 1
" 2m0ly(\oR) RESWAIW) 21
Ly 27r)\oI(]()\0R)/h2<0)d0’ Ly, 7T)\Oﬂn()\OR)/hg(H) cos médo, (21)
0 0
1 2w
Ko = 7T)\017’n()\0R)/h2(9) sinmfdo,

0
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_OIn(§)  OLn(Mop)
T Op

=Xl (Xop) I, (AoR) #0, m=0,1,2,....

Using formulas (13), (19),(20),(17) and (21), we can find values of the functions p; (x), p2(x)
and ug(x) for z € D.

Solution of the problem A
Substitute (13) in (1)
pAu+ (A + p)graddiva = gradfapr + bps + Yous], (22)

where a = 81 + B2, b= ko1 — k10o.
Then a general solution of last equation is presented in the form

u(x) = v(x) + vo(x), (23)
where v(x) is a general solution of the equation
pAV + (A + p)graddivv =0 (24)

and v(x) is a particular solution of the nonhomogeneous equation (22):

vo(x) = ygzarad | ag(x) - /\b%cpg(x)—kv()u?,o(x) , (25)
where
Apo(x) = p1(x),  Auge(x) = usz(x); (26)

AAQOO = Agol = O, AAZL;J,() = AU3 =0.
Using (16), for the solution of equations (26) in the case of problem B; we find in the form

o) = S L ()" iy ),

4 = m+1\R
(27)
R? & 1 p\mt2
=— — 5 Ly v (V)),
o) = G 3 (£)" (- vu®))
where the values of Y;,, = (A, By) and Z,, = (Cyy, Dyy,) defined in (16).
Taking into account (19) and (20), in the case of By task we get:
R} & 1 pP\™
= — —— (5 ) (Yly - vn(y)),
el = e+ Y T (%) (Y1)
(28)

o

3 m
usn(x) = e + ﬁmzz e (B)” @ vao)),
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where ¢; and ¢y are arbitrary constants;  the values of Y1,, = (Al,,, Bl,,) and Z1,, =
(C1,,, D1,,) defined in (19) and (20).

Now, define the vector v(x).

A solution v(x) = (v1,v2) of homogeneous equation (24) is sought in the form

0 0P3
= — (B + Py) — —=2
v1(x) 8:1:1( 1+ ®9) 02y
(29)
0 0P3
=—(P1+ @ —
v2(x) 8%2( 1+ ®2) + Fro
where &1, ®5 and @3 are scalar functions, satisfying the following equations
Ad; =0, AADP; =0, AAP3=0,
0 0
A4 2u)— APy — p—AdP3 =0
( + M) 8:1)1 2 'ual'z 3 ’ (30)

0 0
A+ 20)—AD —AP3 =0.
(A + M)axQ 2+M8x1 3=0

In view of (30) we can represent the harmonic function ®;, biharmonic functions ®5 and @3
in the form

= 3 ()" Ko va(0))
b= 5 (3)" Oz w0 (31)

A +2u L/ p\m2
@3_umzo(R) (X2 - (1),

where X, = (Xmi1, Xmi2), @ = 1,2 are the sought two-component vectors, vy =
(cosmip, sinmy)), sy, = (—sinmy, cosma).
First solve the problems A; and As.

Problem A;
Taking into account (23) and relying on the condition (3), we can write
v(z) = ¥(2), (32)

where ¥(z) = f(z) — vo(z) is the known vector; vy is defined by formula (25), and ¢, uso, ¥1
and @y by equalities (27), (16), (17), respectively.
We rewrite (32)and (29) in the form

un(2) = ¥(2)n, vs(z) = ¥(z)s, (33)
0 10
Up = %(@1 + ®9) — ;%@3,

(34)

10 0
Vs pa¢(1+ 2)+8p 3,
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where v,,(z) and vs(z), as well as ¥(z), and ¥(z)s are the normal and tangent components

of the vectors v = (v1,v2) and ¥(z), respectively; n = (n1,ng2), s = (—ng,n1), n1 =
E7 ng = 2
p

Expand the functions ¥, (z) andW¥4(z) in Fourier series, whose Fourier coefficients are
= (am1, am2) and B = (B, Bm2), respectively.
In (34) we substitute (31), the results are substituted in (33), then passing to limit as p — R,
for determining the unknown values we obtain the following system of algebraic equations,
whose solution has the form

o Coil? _ Dol
014 4 b (021, 4()\"32/,6)’
amiR ﬁmi_ami R
Xm1i = - A+3 2 ,
! m 2N+ p)m (A + 3p)m + 2y (35)
Xin:MM; m=1,2,...;i=1,2.

2N+ p)m
We substitute (35) in (31), and then in (29), we obtain the value of the vector v(x).

Problem A,

We seek the solution of equation (22) in the form (23). vp(x) is determined by the formulas
(25) and (28). Now, we seek a solution v(x) of equation (24) with the following boundary
condition:

T(0gz,n)v(z) =¥ (z), z€S,
where, taking into account (4) and (5), we write
U(z) = f(2) + n(z)[apa2(2) + b1(2) + yous(z)] — T(9z n)vo(2)

is the known vector, ¥ = (¥, Uy). We rewrite the equality in the form of normal and
tangential components. We get:

n A Jvg(z)
. R Oy

= U,(z),

e 75

o | . "R ov

[a%(z)]p B ) g

W‘;:Ez) = fn(2) + ap2(2z) + bp1(z) + Yous — [T (;Z, H) VO(Z)] K

U,(z) = fo(z) — {T <§Z,n> vo(z)L z€8.

v, and vy are defined from (29), vy is defined by means of formula (25), where functions
vo(z) and usp are determined by the formulas (28).

Expand the functions ¥, (z) and¥4(z) in Fourier series, whose Fourier coefficients are
Ym = (Ym1,Ym2) and 6y, = (91, Oma2), respectively.

Substituting in (31) the values of v, and vs from (29), we obtain a system of algebraic
equations. The solution of this system has the form
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’70’iR2 50iR2
Xopi= 2 Xy = —2
M a+ 2w T T A+ 2p)
R2 . a4R2 . .
Xm1i = —0mi — ——————(pymi — a16mi), (37)
as as20a3 — a1a4
a3 R? . .
Xmoi = 7(“7"”! - aléml)a

a2a3 — 104
where
ar = p2\+ p)m? — (A +2u)ym],  ag = 2(A + p)(A + 3pu)m? + (A + 2u)[(3X + 5p)m + 24,
az =pm(2m —1), as=A+3p)m2m+3)+2(A\+2u), m=1,2,....
We substitute (37) in (31), and then in (29), we obtain the value of the vector v(x).
Conditions: f; € C3(S) - in problem A; and conditions: f; € C?(S) in problem As,
provide absolutely and uniformly convergence of series.
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