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SOLUTION OF THE SECOND BOUNDARY VALUE PROBLEM OF STATICS OF
THE THEORY OF ELASTIC MIXTURE FOR A CIRCULAR RING

Svanadze K.

Abstract. For the two-dimensional homogeneous equation of statics of the linear theory of
elastic mixture in a circular ring we consider the second boundary value problem (when on
the boundary are given a stress vectors). The solution is presented in the form of absolutely
and uniformly convergent series.
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1. Introduction

The basic two-dimensional boundary value problems statics of the linear theory of elastic
mixtures are studied in [1], [2], [3],[5] and also by many other authors. The paper deals with
the construction of explicit solution to the second boundary value problem of the linear theory
of elastic mixture in the case of a circular ring.For the solution of the problem the use will
be made of the generalized Kolosov-Muskhelishvili’s formula [3] and the method developed
in [4] and [5]. The solution is obtained in the form of absolutely and uniformly convergent
series.

2. Some auxiliary formulas and operators

A homogeneous equation of static of the linear theory of elastic mixtures in a complex
form is of type [3]

∂2U

∂z∂z
+K

∂2U

∂z2 = 0, (2.1)

where z = x1 + ix2, ∂
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′
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d2 = a1a2 − c2 > 0, a1 = µ1 − λ5, a2 = µ2 − λ5, c = µ3 + λ5, l1 + l4 =
b

d1
,

l2 + l5 = − c0
d1
, l3 + l6 =

a

d1
, d1 = ab− c20 > 0, a = a1 + b1, (2.2)
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b = a2 + b2, c0 = c+ d, b1 = µ1 + λ1 + λ5 − α2
ρ2

ρ
,

b2 = µ2 + λ2 + λ5 + α2
ρ1

ρ
, α2 = λ3 − λ4, ρ = ρ1 + ρ2,

d = µ2 − λ3 − λ5 − α2
ρ1

ρ
≡ µ3 + λ4 − λ5 + α2

ρ2

ρ
.

Here µ1, µ2, µ3, λp, p = 1, 5 are elastic modules characterizing mechanical properties
of the mixture, ρ1 and ρ2 are partial densities of the mixture. It will be assumed that the
elastic constants µ1, µ2, µ3, λp, p = 1, 5 and partial rigid densities ρ1 and ρ2 satisfy the
certain conditions given in [1].

In [3] M. Basheleishvili obtained the following representation (analogous to the Kolosov-
Muskhelishvili formulas)

U = (u1 + iu2, u3 + iu4)> = mϕ(z) +
1
2
lzϕ′(z) + ψ(z), (2.3)

TU = [(Tu)2 − i(Tu)1, (Tu)4 − i(Tu)3]
>

∂

∂s(x)

[
(A− 2E)ϕ(z) +Bzϕ′(z) + 2µψ(z)

]
, (2.4)

where ϕ = (ϕ1, ϕ2)> and ψ = (ψ1, ψ2)> are arbitrary analytic vector functions,
(Tu)p, p = 1, 4 are components of the stress vector [1],

A =
[
A1, A2

A3, A4

]
= µm, B =

[
B1, B2

B3, B4

]
= µl,

µ =
[
µ1, µ3

µ3, µ2

]
, m =

[
m1,m2

m2,m3

]
, E =

[
1 0
0 1

]
; (2.5)

∂

∂s(x)
= n1

∂

∂x2
− n2

∂

∂x1
,

n = (n1, n2) is the unit normal vector.
We remark also that [2]

∆0 = det |m| > 0, ∆1 = det |µ| > 0, ∆2 = det |A− 2E| > 0,

∆3 = det |2E −A−B| > 0, ∆∗ = det |A−B − 2E| = 0, (2.6)

To solve the problem we use also the formulas [2]

A1 − 2 +A3 = B1 +B3, A2 +A4 − 2 = B2 +B4, (2.7)

B1 +H0B3 = K0(A1 − 2 +HoA3), B2 +H0B4 = K0[A2 +Ho(A4 − 2)], (2.8)

where H0 is root of an equation [2]

B2 +XB4

B1 +XB3
=
A2 +X(A4 − 2)
A1 − 2 +XA3

,
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X1 = 1, X2 = H0 = −A2B1 +B2(2−A1)
B3(2−A4) +A3B4

6= 1, (2.9)

K0 =
∆1(b1b2 − d2)

∆2d1d2
=

1
∆2

det |B|, |K0| < 1, K0 6= 0. (2.10)

Here b1, b2, d1, d2, d,∆1 and ∆2 are given by the (2.2) and (2.6).

3. Statement of the second boundary value problem and scheme of its solution

Let us assume that an elastic mixture occupies the circular ring G = {r < |σ| < 1}
bounded by the circumferences Γ0 = |σ| = 1 and Γ1 = |σ| = r, Γ = Γ0 ∪ Γ1.

We consider the following problem. Find in the domain G,a vector
U = (u1 + iu2, u3 + iu4)> which belongs to the class C2(G)∩C1,α(G∪Γ) is a solution of

equation (2.1) and satisfies the following boundary conditions (see (2.4))

[TU(t)]Γ0
= iσ

[
(A− 2E)φ(σ) +Bφ(σ)−Bσφ′(σ)− 2µσ2Ψ(σ)

]
= f (0)(θ0), t = σ = eiθ0 , 0 ≤ θ0 ≤ 2π, (3.1)

[TU(t)]Γ1
= iσ

[
(A− 2E)φ(rσ) +Bφ(rσ)−Brσφ′(rσ)− 2µσ2Ψ(rσ)

]
= f (1)(θ0), t = rσ = reiθ0 , 0 ≤ θ0 ≤ 2π,

where f (j) = (f (j)
1 , f

(j)
2 )> (j = 0, 1) are given complex vector-functions on the Γj , (j =

0, 1), satisfying certain conditions,

φ(t) = ϕ
′
(t), Ψ(t) = ψ

′
(t). (3.2)

The following assertion is true [6].
Theorem 3.1 The general solution of the second homogeneous boundary value problem

in G is represented by the formula U = a0 + iε0
(

1
1

)
z , where z = x1 + ix2, a0 = (a0

1, a
0
2)is

an arbitrary complex constant vector, and ε0 is an arbitrary real constant.
Let us change the (3.1) boundary conditions by the equivalent conditions:

(A− 2E)φ(σ) +B
[
φ(σ)− σφ

′
(σ)

]
− 2µσ2Ψ(σ) = f(θ0), (3.3)

(A− 2E)φ(rσ) +B
[
φ(rσ)− rσφ

′
(rσ)

]
− 2µσ2Ψ(rσ) = −F (θ0), (3.4)

where

f(θ0) = ieiθ0f0(θ0), and F (θ0) = −ieiθ0f
(1)
(θ0), 0 ≤ θ0 ≤ 2π.

In the sequel we will assume that∮
f(θ0)dσ + r

∮
F (θ0)dσ = 0, (3.5)
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∮ (
1
1

) [
f(θ0)− f(θ0)

] dσ
σ

+ r2
∮ (

1
1

) [
F (θ0)− F (θ0)

] dσ
σ

= 0. (3.6)

Note that (see [3.P.439] and [4]) conditions (3.5) and (3.6) express that the principal
vector and the principal moment of external forces are equal to zero.

Let us assume that vector-functions f(θ0) and F (θ0)satisfy the sufficient smoothness
conditions that allow us to represent them into a Laurent series

f(θ0) = f0 +
∞∑

k=1

fkσ
k +

∞∑
k=1

f−kσ
−k, (3.7)

F (θ0) = F0 +
∞∑

k=1

Fkσ
k +

∞∑
k=1

F−kσ
−k, (3.8)

where σ = eiθ0 , fq = (fq1 , fq2)
T and Fq = (Fq1 , Fq2)

T , q = 0,±1,±2,±... are of the
Laurent coefficients.

Below we assume that

f−1 + rF−1 = 0, (3.9)

f0 + r2F0 = f0 + r2F0. (3.10)

Obviously the conditions (3.5) and (3.6) are fulfilled if the coefficients f−1, F−1, f0

and F0 (see (3.7) and (3.8)) satisfy the conditions (3.9) and (3.10).
Let us now consider the vector-function

2µΨ(t) = t−2

{
(A− 2E)Φ(

1
t
) +B[φ(t)− tφ

′
(t)]− L(t)

}
, r ≤ |t| ≤ 1, (3.11)

where L(t) is a Laurent series

L(t) = f0 +
∞∑

k=1

fkt
−k +

∞∑
k=1

f−kt
k. (3.12)

It is obvious that (3.11) vector-function satisfies condition (3.3).
Keeping in mind (3.11) in (3.4) we obtain

(1− r2)B
[
φ(rσ)− rσφ

′
(rσ)

]
− (A− 2E)

[
r2φ(rσ)− φ(

σ

r
)
]

= r2F (θ0)

+L(rσ) = r2F0 + f0 +
∞∑

k=1

(
r2Fk + r−kfk

)
σ−k +

∞∑
k=1

(
r2F−k + rkf−k

)
σk. (3.13)

Let us consider the boundary condition conjugate to the condition (3.13)

(1− r2)B
[
φ(rσ)− r

σ
φ′(rσ)

]
− (A− 2E)

[
r2φ(rσ)− φ(

σ

r
)
]

= r2F0 + f0
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+
∞∑

k=1

(
r2Fk + r−kfk

)
σk +

∞∑
k=1

(
r2F−k + rkf−k

)
σ−k. (3.14)

We look for the analytic vector-function φ(t) in the following form

φ(t) = C0 +
∞∑

k=1

Ckt
k + C−1t

−1 +
∞∑

k=2

C−kt
−k, r ≤ |t| ≤ 1, (3.15)

where Ck = (Ck1 , Ck2)
T , k = 0,±1,±2,±... are unknown constant vectors.

By substituting (3.15) into (3.11) we get

2µΨ(t) = t−2 {(A− 2E)C0 +B(C0 + 2C−1t
−1)

(A− 2E)

[ ∞∑
k=1

Ckt
−k + C−1t+ sum∞k=2C−kt

k

]

B

[ ∞∑
k=2

(1− k)Ckt
k +

∞∑
k=2

(1 + k)C−kt
−k

]
− L(t)}. (3.16)

Keeping in mind (3.15) and (3.16) in (3.2) by integration we obtain

ϕ(t) = (C−1lnt+ ...), 2µψ(t) =
[
(A− 2E)C−1 − f−1

]
lnt+ .... (3.17)

Now note that since displacement u = (u
′
, u

′′
)T = (u1, u2, u3, u4)T is one-valued in the

circular ring G, therefore owing to formulas (3.17) we can conclude that 2µU = (u1+iu2, u3+
iu4) (see (2.3), (2.5) and (3.2)) represent one-valued vector in G when

AC−1 − [(A− 2E)C−1 − f−1] = 0, C−1 =
1
2
f−1. (3.18)

Taking into account (3.15) and (3.16) in (3.13) and (3.14) after some calculations, for
the determination of the coefficients Ck(Ck) and C−k(C−k) we obtain the following system
of equations:

(1− r2)
[
BC0 + (A− 2E)C0

]
= r2F0 + f0, (3.19)

(1− r2)(1− k)rkBCk + (rk − r2−k)(A− 2E)C−k = r2F−k + rkf−k,

(r−k − r2+k)(A− 2E)Ck + (1− r2)(1 + k)r−kBC−k = r2Fk + r−kfk. (3.20)

Owing to (3.10) and (2.6) from (3.19) by exactness ImC0 = 0 we obtain

C0 = (A+B − 2E)−1 r
2F0 + f0

1− r2
= (A+B − 2E)−1 r

2F0 + f0

1− r2
. (3.21)

From (3.20) by virtue of (3.9) when k = 1, (k = −1) we have

(1− r4)(A− 2E)C1 + 2(1− r2)BC−1 = r3F1 + f1,

whence owing to (2.6) and (3.18) we get

C1 = (A− 2E)
r3F1 + f1

1− r4
+ (A− 2E)−1B

f−1

1 + r2
. (3.22)
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Bearing in mind the formulas (2.7), (2,8), (2,9) and (2.10), after some calculations, we
can rewrite (3.20) in the form of two systems of equations:

(1− k)(1− r2)rk

(
B1 +B3

B2 +B4

)
Ck + (rk + r2−k)

(
B1 +B3

B2 +B4

)
C−k

=
(

1
1

)
(r2F−k + rkf−k) = ν

(1)
k , (3.23)

(r−k − r2+k)
(
B1 +B3

B2 +B4

)
Ck + (1 + k)(1− r2)r−k

(
B1 +B3

B2 +B4

)
C−k

=
(

1
1

)
(r2Fk + r−kfk) = ν

(2)
k ;

(1− k)(1− r2)rk

(
B1 +H0B3

B2 +H0B4

)
Ck +K−1

0 (rk − r2−k)
(
B1 +H0B3

B2 +H0B4

)
C−k

=
(

1
H0

)
(r2F−k + rkf−k) = δ

(1)
k , (3.24)

K−1
0 (r−k − r2+k)

(
B1 +H0B3

B2 +H0B4

)
Ck + (1 + k)(1− r2)r−k

(
B1 +H0B3

B2 +H0B4

)
C−k

=
(

1
H0

)
(r2Fk + r−kfk) = δ

(2)
k .

Denoting the determinant of the systems (3.23) and (3.24) by Dk and D∗k respectively.
Simple calculations yield

Dk = r4
[
(1− r−2)2(1− k2) + r2k−2 + r−2k−2 − r−4 − 1

]
= ξ−2

[
(1− k2)(1− ξ)2 + ξk+1 + ξ1−k − ξ2 − 1

]
, (3.25)

D∗k = K−2
0

[
Dk + (k2 − 1)(1−K2

0 )(1− r2)2
]
,

where
0 < r < 1, ξ = r−2, |k| ≥ 2; |K0| < 1. K0 6= 0, (see (2.10)) (3.26)
Now note that since [see [4.p.210.scholie 2] (1 − k2)(1 − ξ)2 + ξk+1 − ξ1−k − ξ2 − 1 > 0,

when ξ > 1 and |k| ≥ 2 therefore from (3.25) owing to (3.26) we obtain Dk > 0 and D∗k > 0
Thus, it follows from (3.23) and (3.24) that

(B1 +B3)Ck1 + (B2 +B4)Ck2 = γK ,

(B1 +H0B3)Ck1 + (B2 +H0B4)Ck2 = βk, (3.27)

(B1 +B3)C−k1 + (B2 +B4)C−k2 = Pk,
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(B1 +H0B3)C−k1 + (B2 +H0B4)C−k2 = qk, (3.28)

Here Ck = (Ck1, Ck2)T , C−k = (C−k1, C−k2)T

γk =
1
Dk

[
ν

(1)
k (1− r2)(1 + k)r−k − ν

(2)
k (rk − r2−k)

]
,

βk =
1

K0D∗k

[
K0δ

(1)
k (1− r2)(1 + k)r−k − δ

(2)
k (rk − r2−k)

]
,

Pk =
1
Dk

[
ν

(2)
k (1− r2)(1− k)rk − ν

(1)
k (r−k − r2+k)

]
,

qk =
1

K0D∗k

[
K0δ

(2)
k (1− r2)(1− k)rk − δ

(1)
k (r−k − r2+k)

]
(3.29)

Now note that the determinant of the system (3.27) [(3.28)] is equal to K0∆2(H0 − 1)
and different from zero (see (2.6), (2.9) and (2.10)).

Finally note that by easy calculations it follows from (3.27) and (3.28) that

Ck =
1

K0∆2(H0 − 1)

(
γk(B2 +H0B4)− βk(B2 +B4)
βk(B1 +B3)− γk(B1 +H0B3)

)
, (3.30)

C−k =
1

K0∆2(H0 − 1)

(
Pk(B2 +H0B4)− βk(B2 +B4)
qk(B1 +B3)− Pk(B1 +H0B3)

)
, (3.31)

where γk, βk, Pk and qk are defined by (3.29)
Substituting in formulas (3.15) and (3.16) the values Ck, Ck, C−ka and C−k (k =

0, 1, 2, 3, ...) appearing in (3.18), (3.21), (3.22), (3.30) and (3.31) we find the vector-functions
φ and Ψ in the form of series. Having found φ and Ψ using formulas (3.2) we can find ϕ and
ψ vector-functions and after by (2.3) formula we obtain the expression for the displacement
vector in the form of a series.

Finally note that the series will be absolutely and uniformly convergent in the domain G
if f

′′
(θ0) and (F

′′
(θ0) 0 ≤ θ0 ≤ 2π) belong to the Dirichlet class (see [4]).
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