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CLOSED CONVEX SHELLS

Meunargia T.

Abstract. If Ω is a closed convex shell, then S : x3 = 0 is an ovaloid. It is proved that in
this case the equation of equilibrium may have only the unique regular solution and hence,
the corresponding homogenous equation has no non-zero solution on S.
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Mixed forms of stress-strain relations are given in the form

σi
j = λθgi

j + 2µei
j (i = j = 1, 2, 3) (1)

where σi
j and ei

j are the mixed components, respectively, of stress and strain tensors, θ
is the cubical dilatation which will be written as

θ = ei
i = θ′ + e3

3, θ′ = eα
α, (α = 1, 2) (2)

when j = 3 from (1) we have

σα
3 = 2µeα

3 , σ3
3 = λθ + 2µe3

3 = λθ′ + (λ + 2µ)e3
3. (3)

from (3)

eα
3 =

1

2µ
σα

3 , e3
3 = − λ

λ + 2µ
θ′ +

1

λ + 2µ
σ3

3. (4)

By inserting (4) into (2) we obtain

θ =
λ′

λ
θ′ +

λ

λ + 2µ
σ3

3, (5)

where λ′ =
2λµ

λ + 2µ
.

Substituting expression (5) into (1) we get

σi
j = T i

j + Qi
j =

(
λ′θ′ +

λ

λ + 2µ
σ3

3

)
gi

j + 2µei
j

where

Tα
β = λ′θ′gα

β + 2µeα
β , Qα

β = σ′σ3
3g

α
β , T i

3 = 0, Qi
3 = σi

3,

and σ′ =
λ

λ + 2µ
.

The vector T α satisfies the condition nT α = 0 and is therefore called the tangential
stress field and the vector Qi will be called the transverse stress field.
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The vectorial equation of equilibrium has the form

1
√

g
∂i(
√

gσi) + Φ = 0,

(
√

g =
√

aϑ, ϑ = 1− 2Hx3 + Kx2
3)

where H and K are respectively, middle and principal curvatures of the surface S, may
be written as

1
√

g
[∂α
√

gT α) + ∂i(
√

gQi)] + Φ = 0 (6)

Let the surface Ŝ : x3 = const be the neutral surface of a non-shallow shell. Then
T α = 0, i.e. Tαβ = 0 (on Ŝ), and equation (6) becomes

1
√

g
∂α(

√
aϑQα) + ∂3(ϑσ3) + ϑPhi = 0,

or [
∇α(ϑQα) + ∂3(ϑσ3) + ϑΦ

]
x3=c

= 0; (−h ≤ x3 = x3 ≤ h)

where 2h is the thickness of shell and

Qα = σ′σ3
3r

α + σα
3 n, ∇α(·) =

1√
a
∂α(

√
a(.)).

Denoting the stress forces acting on the face surfaces S+ and S− by
(+)

P and
(−)

P we
have

(+)

P = −(σ3)x3=h,
(−)

P = (σ3)x3=−h, (7)

If we approximately represent σ3 by the formula

σ3(x1, x2, x3) ∼=
(0)
σ (x1, x2) + x3 (1)

σ (x1, x2).

From (7) we get

σ3(x1, x2, x3)∼= −1

2

[
(+)

P −
(−)

P +
x3

h
(
(+)

P +
(−)

P )

]
= −1

2

[
h + x3

h
(
(+)

P −
(−)

P ) +
2x3

h

(−)

P

]
or

σ3(x1, x2, x3) = −1

2

[
h + x3

h
(pαrα + p3n) +

2x3

h

(−)

P

]
,

pα =
(+)

Pα−
(−)

Pα, p =
(+)

P 3−
(−)

P 3 .
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Then to define the vector field
(+)

P we have the equation

{∇α(σ′Aα
βprβ + Apαn) + B(pn + pαrα) + Φ̃}x3=c = 0 (8)

where

Aα
β =

h + c

h
[aα

β + c(bα
β − 2Haα

β)], A =
h + c

h
ϑ(c)

B =
1

h
[1− 2Hh + 2(Kh− 2H)c + 3kc2],

Φ̃ = −2ϑ(c)Φ(c) +∇α{σ′2c

h
[aα

β + c(bα
β − 2Haα

β)]
(−)

p3 rβ +
2c

h
ϑ(c)

(−)

pα n}

+
2

h
[ϑ(c) + 2(kc− h)]

(−)
p .

From (8) we have

σ′∇α(Aα
βp) + (Baαβ − Abαβ)pα + Φ̃β = 0, Φ̃β = φ̃rβ, (9)

∇α(Apα) + (σ′Aα
βbβ

α + B)p + Φ̃3 = 0, (Φ̃3 = Φ̃n). (10)

From the system of equation (9) we have

pα =
(+)

Pα−
(−)

Pα = −d̃αβ[∇γ(A
γ
βp) + Φ̃β], p =

(+)

P 3−
(−)

P 3 (11)

where

d̂αβ =
1

∆
[(B − 2AH)aαβ + Abαβ] F̂β = −[Φ̃β +∇α(Aα

βp)],

∆ = B2 − 2ABH + A2K.

Inserting expressions (11) into (10) we obtain the equation

σ′∇α[Ad̃αβ∇γ(A
γ
βp)]− (B + σ′Aα

βbβ
α)p + Φ = 0. (12)

It is easily seen that equation (12) is of the elliptic type.

Thus, if the surface x3 = c is neutral then the stresses
(+)

P and
(−)

P applied to the
face surfaces, must satisfy the vector equations (9) and (10). This means that the

stresses
(+)

P and
(−)

P cannot be prescribed arbitrarily both at the same time. However
there are problems when this does not occur. For example, in aircraft or submarine

apparatus the force
(−)

P acting on the inner face surface S− may be assumed to be

prescribed, but the force
(+)

P acting on the external face surface S+ is not, in general,
assigned beforehand. The same situation occurs on dams. One face surface of the dam
is free from stresses and the other is under the hydrodynamic load, a variable which is
generally difficult to define exactly at any moment of time.
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For closed convex shells when x3 = c is the middle surface (i.e. c = 0 ⇒ x3 = 0)
the homogenous equation (12) may be written in the form

∇α(dαβ∇βu)− d2u = 0, (13)

where

dαβ =
h[aαβ(1− 2hH) + hbαβ]

1− 2Hh + Kh2 + 4hH(2Hh− 1)
,

d2 =
1

σ′h
[1− 2h(1− σ′)H] > 0,

(
σ′ =

λ

λ + 2µ

)
aαβ = rαrβ, rαrβ = aα

β = σα
β , 2H = b1

1 + b2
2, K = b1

1b
2
2 − b2

1b
1
2,

I = aαβdxαdxβ, aαβ = rαrβ,

II = bαβdxαdxβ, bαβ = −nαrβ.

Let u be the regular solution (13) on S(x3 = 0), i.e. u is the continuous function
of the point of the surface S and has continuous partial derivatives with respect to
Gausian coordinates of this surface. We represent the surface S as S = S1 ∪ S2, where
S1 and S2 are parts of the surface with no common points S1 ∩ S2 = ∩ = Ø. Let L be
the common boundary of S1 and S2. Denote the tangential normal to L by l directed
to S1. Multiplying both sides of equation (13) by u, we may rewrite it as

∇α(udαβ∇βu)− dαβ∇αu∇βu− d2u2 = 0.

Integrating this equality with respect to the surfaces S1 and S2, and then applying
Green’s formula, we have∫

L

ulαdαβ∇βuds−
∫∫
S1

(dαβ∇αu∇βu + d2u2)dS1 = 0,

−
∫
L

ulαdαβ∇βuds−
∫∫
S2

(dαβ∇αu∇βu + d2u2)dS2 = 0.

By adding these equalities we obtain∫∫
s

(dαβ∇αu∇βu + d2u)dS = 0. (14)

Since dαβ∇αu∇βu ≥ 0, d2 > 0 from (14) is follows that u = 0, which was to be
proved.

The problem under consideration is thus reduced to the determination of the glob-
ally regular particular solution of the non-homogeneous equation

σ′∇α(dαβ∇βp)− 1

h
[1− 2(1− σ′)hH]p + Φ = 0. (15)
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It remains to show that if equation (15) has globally regular solution, then the
middle surface S : x3 = 0 of the shell is neutral. To do this we have to show first that
the tangential stress field vanishes on S, i.e. it should be shown that the equation

1√
a
∂α(

√
aT α) ≡ 1√

a
∂α(

√
aTαβrβ) = 0 (16)

has no globall solution, except trivial Tαβ = 0. It is evident since, with respect to
isometric-conjugate coordinates x, y, equation (16) is equivalent to the homogeneous
generalized Cauchy-Riemann equation

∂z̄w −Bw̄ = 0, (z = x + iy)

where

w =
1

2
aK

1
4 (T 11 − T 22 − 2iT 12), T 11 + T 22 = 0. (17)

The complex stress function w is continuous on the whole plane E of the complex
variable z = x + iy and at infinity satisfies the condition

w = 0(|z|−4).

This implies, in view of the generalized Liouville theorem, that w = 0. then from
(17) it follows that Tαβ = 0, which was to be proved.
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