Seminar of I. Vekua Institute
 of Applied Mathematics
 REPORTS, Vol. 43, 2017

CLOSED CONVEX SHELLS

Meunargia T.

Abstract

If Ω is a closed convex shell, then $S: x_{3}=0$ is an ovaloid. It is proved that in this case the equation of equilibrium may have only the unique regular solution and hence, the corresponding homogenous equation has no non-zero solution on S.

Keywords and phrases: Closed shells, stress and strain tensors.
AMS subject classification (2010): 74B20.
Mixed forms of stress-strain relations are given in the form

$$
\begin{equation*}
\sigma_{j}^{i}=\lambda \theta g_{j}^{i}+2 \mu e_{j}^{i} \quad(i=j=1,2,3) \tag{1}
\end{equation*}
$$

where σ_{j}^{i} and e_{j}^{i} are the mixed components, respectively, of stress and strain tensors, θ is the cubical dilatation which will be written as

$$
\begin{equation*}
\theta=e_{i}^{i}=\theta^{\prime}+e_{3}^{3}, \quad \theta^{\prime}=e_{\alpha}^{\alpha}, \quad(\alpha=1,2) \tag{2}
\end{equation*}
$$

when $j=3$ from (1) we have

$$
\begin{equation*}
\sigma_{3}^{\alpha}=2 \mu e_{3}^{\alpha}, \quad \sigma_{3}^{3}=\lambda \theta+2 \mu e_{3}^{3}=\lambda \theta^{\prime}+(\lambda+2 \mu) e_{3}^{3} . \tag{3}
\end{equation*}
$$

from (3)

$$
\begin{equation*}
e_{3}^{\alpha}=\frac{1}{2 \mu} \sigma_{3}^{\alpha}, \quad e_{3}^{3}=-\frac{\lambda}{\lambda+2 \mu} \theta^{\prime}+\frac{1}{\lambda+2 \mu} \sigma_{3}^{3} . \tag{4}
\end{equation*}
$$

By inserting (4) into (2) we obtain

$$
\begin{equation*}
\theta=\frac{\lambda^{\prime}}{\lambda} \theta^{\prime}+\frac{\lambda}{\lambda+2 \mu} \sigma_{3}^{3}, \tag{5}
\end{equation*}
$$

where $\lambda^{\prime}=\frac{2 \lambda \mu}{\lambda+2 \mu}$.
Substituting expression (5) into (1) we get

$$
\sigma_{j}^{i}=T_{j}^{i}+Q_{j}^{i}=\left(\lambda^{\prime} \theta^{\prime}+\frac{\lambda}{\lambda+2 \mu} \sigma_{3}^{3}\right) g_{j}^{i}+2 \mu e_{j}^{i}
$$

where

$$
T_{\beta}^{\alpha}=\lambda^{\prime} \theta^{\prime} g_{\beta}^{\alpha}+2 \mu e_{\beta}^{\alpha}, \quad Q_{\beta}^{\alpha}=\sigma^{\prime} \sigma_{3}^{3} g_{\beta}^{\alpha}, \quad T_{3}^{i}=0, \quad Q_{3}^{i}=\sigma_{3}^{i},
$$

and $\sigma^{\prime}=\frac{\lambda}{\lambda+2 \mu}$.
The vector \boldsymbol{T}^{α} satisfies the condition $\boldsymbol{n} \boldsymbol{T}^{\alpha}=0$ and is therefore called the tangential stress field and the vector \boldsymbol{Q}^{i} will be called the transverse stress field.

The vectorial equation of equilibrium has the form

$$
\begin{gathered}
\frac{1}{\sqrt{g}} \partial_{i}\left(\sqrt{g} \boldsymbol{\sigma}^{i}\right)+\boldsymbol{\Phi}=0 \\
\left(\sqrt{g}=\sqrt{a} \vartheta, \quad \vartheta=1-2 H x_{3}+K x_{3}^{2}\right)
\end{gathered}
$$

where H and K are respectively, middle and principal curvatures of the surface S, may be written as

$$
\begin{equation*}
\left.\frac{1}{\sqrt{g}}\left[\partial_{\alpha} \sqrt{g} \boldsymbol{T}^{\alpha}\right)+\partial_{i}\left(\sqrt{g} \boldsymbol{Q}^{i}\right)\right]+\boldsymbol{\Phi}=0 \tag{6}
\end{equation*}
$$

Let the surface $\hat{S}: x^{3}=$ const be the neutral surface of a non-shallow shell. Then $\boldsymbol{T}^{\alpha}=0$, i.e. $T^{\alpha \beta}=0$ (on \hat{S}), and equation (6) becomes

$$
\frac{1}{\sqrt{g}} \partial_{\alpha}\left(\sqrt{a} \vartheta \boldsymbol{Q}^{\alpha}\right)+\partial_{3}\left(\vartheta \boldsymbol{\sigma}^{3}\right)+\vartheta P h i=0
$$

or

$$
\left[\nabla_{\alpha}\left(\vartheta \boldsymbol{Q}^{\alpha}\right)+\partial_{3}\left(\vartheta \boldsymbol{\sigma}^{3}\right)+\vartheta \boldsymbol{\Phi}\right]_{x^{3}=c}=0 ; \quad\left(-h \leq x^{3}=x_{3} \leq h\right)
$$

where $2 h$ is the thickness of shell and

$$
\boldsymbol{Q}^{\alpha}=\sigma^{\prime} \sigma_{3}^{3} \boldsymbol{r}^{\alpha}+\sigma_{3}^{\alpha} \boldsymbol{n}, \quad \nabla_{\alpha}(\cdot)=\frac{1}{\sqrt{a}} \partial_{\alpha}(\sqrt{a}(.)) .
$$

Denoting the stress forces acting on the face surfaces S^{+}and S^{-}by $\stackrel{(+)}{\boldsymbol{P}}$ and $\stackrel{(-)}{\boldsymbol{P}}$ we have

$$
\begin{equation*}
\stackrel{(+)}{\boldsymbol{P}}=-\left(\boldsymbol{\sigma}^{3}\right)_{x^{3}=h}, \quad \stackrel{(-)}{\boldsymbol{P}}=\left(\boldsymbol{\sigma}^{3}\right)_{x^{3}=-h}, \tag{7}
\end{equation*}
$$

If we approximately represent $\boldsymbol{\sigma}^{3}$ by the formula

$$
\boldsymbol{\sigma}^{3}\left(x^{1}, x^{2}, x^{3}\right) \cong \stackrel{(0)}{\boldsymbol{\sigma}}\left(x^{1}, x^{2}\right)+x^{3} \stackrel{(1)}{\boldsymbol{\sigma}}\left(x^{1}, x^{2}\right) .
$$

From (7) we get

$$
\begin{aligned}
\boldsymbol{\sigma}^{3}\left(x^{1}, x^{2}, x^{3}\right) & \cong-\frac{1}{2}\left[\stackrel{(+)}{\boldsymbol{P}}-\stackrel{(-)}{\boldsymbol{P}}+\frac{x^{3}}{h}(\stackrel{(+)}{\boldsymbol{P}}+\stackrel{(-)}{\boldsymbol{P}})\right] \\
& =-\frac{1}{2}\left[\frac{h+x^{3}}{h}(\stackrel{(+)}{\boldsymbol{P}}-\stackrel{(-)}{\boldsymbol{P}})+\frac{2 x^{3}}{h} \stackrel{(-)}{\boldsymbol{P}}\right]
\end{aligned}
$$

or

$$
\begin{gathered}
\boldsymbol{\sigma}^{3}\left(x^{1}, x^{2}, x^{3}\right)=-\frac{1}{2}\left[\frac{h+x^{3}}{h}\left(p^{\alpha} \boldsymbol{r}_{\alpha}+p^{3} \boldsymbol{n}\right)+\frac{2 x^{3}}{h} \stackrel{(-)}{\boldsymbol{P}}\right], \\
p^{\alpha}=\stackrel{(+)}{P^{\alpha}}-\stackrel{(-)}{P^{\alpha}}, \quad p=\stackrel{(+)}{P^{3}}-\stackrel{(-)}{P}^{3} .
\end{gathered}
$$

Then to define the vector field $\stackrel{(+)}{\boldsymbol{P}}$ we have the equation

$$
\begin{equation*}
\left\{\nabla_{\alpha}\left(\sigma^{\prime} A_{\beta}^{\alpha} p \boldsymbol{r}^{\beta}+A p^{\alpha} \boldsymbol{n}\right)+B\left(p \boldsymbol{n}+p^{\alpha} \boldsymbol{r}_{\alpha}\right)+\tilde{\boldsymbol{\Phi}}\right\}_{x^{3}=c}=0 \tag{8}
\end{equation*}
$$

where

$$
\begin{gathered}
A_{\beta}^{\alpha}=\frac{h+c}{h}\left[a_{\beta}^{\alpha}+c\left(b_{\beta}^{\alpha}-2 H a_{\beta}^{\alpha}\right)\right], \quad A=\frac{h+c}{h} \vartheta(c) \\
B=\frac{1}{h}\left[1-2 H h+2(K h-2 H) c+3 k c^{2}\right], \\
\tilde{\boldsymbol{\Phi}}=-2 \vartheta(c) \boldsymbol{\Phi}(c)+\nabla_{\alpha}\left\{\sigma^{\prime} \frac{2 c}{h}\left[a_{\beta}^{\alpha}+c\left(b_{\beta}^{\alpha}-2 H a_{\beta}^{\alpha}\right)\right] p^{(-)} \boldsymbol{r}^{\beta}+\frac{2 c}{h} \vartheta(c) \stackrel{(-)}{p^{\alpha}} \boldsymbol{n}\right\} \\
+\frac{2}{h}[\vartheta(c)+2(k c-h)] \stackrel{(-)}{\boldsymbol{p}} .
\end{gathered}
$$

From (8) we have

$$
\begin{gather*}
\sigma^{\prime} \nabla_{\alpha}\left(A_{\beta}^{\alpha} p\right)+\left(B a_{\alpha \beta}-A b_{\alpha \beta}\right) p^{\alpha}+\tilde{\Phi}_{\beta}=0, \quad \tilde{\Phi}_{\beta}=\tilde{\boldsymbol{\phi}} \boldsymbol{r}_{\beta}, \tag{9}\\
\nabla_{\alpha}\left(A p^{\alpha}\right)+\left(\sigma^{\prime} A_{\beta}^{\alpha} b_{\alpha}^{\beta}+B\right) p+\tilde{\Phi}_{3}=0, \quad\left(\tilde{\Phi}_{3}=\tilde{\boldsymbol{\Phi}} \boldsymbol{n}\right) . \tag{10}
\end{gather*}
$$

From the system of equation (9) we have

$$
\begin{equation*}
p^{\alpha}=\stackrel{(+)}{P^{\alpha}}-\stackrel{(-)}{P^{\alpha}}=-\tilde{d}^{\alpha \beta}\left[\nabla_{\gamma}\left(A_{\beta}^{\gamma} p\right)+\tilde{\Phi}_{\beta}\right], \quad p=\stackrel{(+)}{P^{3}}-\stackrel{(-)}{P^{3}} \tag{11}
\end{equation*}
$$

where

$$
\begin{gathered}
\hat{d}^{\alpha \beta}=\frac{1}{\Delta}\left[(B-2 A H) a^{\alpha \beta}+A b^{\alpha \beta}\right] \quad \hat{F}_{\beta}=-\left[\tilde{\Phi}_{\beta}+\nabla_{\alpha}\left(A_{\beta}^{\alpha} p\right)\right], \\
\Delta=B^{2}-2 A B H+A^{2} K .
\end{gathered}
$$

Inserting expressions (11) into (10) we obtain the equation

$$
\begin{equation*}
\sigma^{\prime} \nabla_{\alpha}\left[A \tilde{d}^{\alpha \beta} \nabla_{\gamma}\left(A_{\beta}^{\gamma} p\right)\right]-\left(B+\sigma^{\prime} A_{\beta}^{\alpha} b_{\alpha}^{\beta}\right) p+\Phi=0 . \tag{12}
\end{equation*}
$$

It is easily seen that equation (12) is of the elliptic type.
Thus, if the surface $x^{3}=c$ is neutral then the stresses $\stackrel{(+)}{\boldsymbol{P}}$ and $\stackrel{(-)}{\boldsymbol{P}}$ applied to the face surfaces, must satisfy the vector equations (9) and (10). This means that the stresses $\stackrel{(+)}{\boldsymbol{P}}$ and $\stackrel{(-)}{\boldsymbol{P}}$ cannot be prescribed arbitrarily both at the same time. However there are problems when this does not occur. For example, in aircraft or submarine apparatus the force $\stackrel{(-)}{\boldsymbol{P}}$ acting on the inner face surface S^{-}may be assumed to be prescribed, but the force $\stackrel{(+)}{\boldsymbol{P}}$ acting on the external face surface S^{+}is not, in general, assigned beforehand. The same situation occurs on dams. One face surface of the dam is free from stresses and the other is under the hydrodynamic load, a variable which is generally difficult to define exactly at any moment of time.

For closed convex shells when $x^{3}=c$ is the middle surface (i.e. $c=0 \Rightarrow x^{3}=0$) the homogenous equation (12) may be written in the form

$$
\begin{equation*}
\nabla_{\alpha}\left(d^{\alpha \beta} \nabla_{\beta} u\right)-d^{2} u=0, \tag{13}
\end{equation*}
$$

where

$$
\begin{gathered}
d^{\alpha \beta}=\frac{h\left[a^{\alpha \beta}(1-2 h H)+h b^{\alpha \beta}\right]}{1-2 H h+K h^{2}+4 h H(2 H h-1)}, \\
d^{2}=\frac{1}{\sigma^{\prime} h}\left[1-2 h\left(1-\sigma^{\prime}\right) H\right]>0, \quad\left(\sigma^{\prime}=\frac{\lambda}{\lambda+2 \mu}\right) \\
a^{\alpha \beta}=\boldsymbol{r}^{\alpha} \boldsymbol{r}^{\beta}, \quad \boldsymbol{r}^{\alpha} \boldsymbol{r}_{\beta}=a_{\beta}^{\alpha}=\sigma_{\beta}^{\alpha}, \quad 2 H=b_{1}^{1}+b_{2}^{2}, \quad K=b_{1}^{1} b_{2}^{2}-b_{1}^{2} b_{2}^{1}, \\
I=a_{\alpha \beta} d x^{\alpha} d x^{\beta}, \quad a_{\alpha \beta}=\boldsymbol{r}_{\alpha} \boldsymbol{r}_{\beta}, \\
I I=b_{\alpha \beta} d x^{\alpha} d x^{\beta}, \quad b_{\alpha \beta}=-\boldsymbol{n}_{\alpha} \boldsymbol{r}_{\beta} .
\end{gathered}
$$

Let u be the regular solution (13) on $S\left(x^{3}=0\right)$, i.e. u is the continuous function of the point of the surface S and has continuous partial derivatives with respect to Gausian coordinates of this surface. We represent the surface S as $S=S_{1} \cup S_{2}$, where S_{1} and S_{2} are parts of the surface with no common points $S_{1} \cap S_{2}=\cap=\emptyset$. Let L be the common boundary of S_{1} and S_{2}. Denote the tangential normal to L by l directed to S_{1}. Multiplying both sides of equation (13) by u, we may rewrite it as

$$
\nabla_{\alpha}\left(u d^{\alpha \beta} \nabla_{\beta} u\right)-d^{\alpha \beta} \nabla_{\alpha} u \nabla_{\beta} u-d^{2} u^{2}=0 .
$$

Integrating this equality with respect to the surfaces S_{1} and S_{2}, and then applying Green's formula, we have

$$
\begin{aligned}
& \int_{L} u l_{\alpha} d^{\alpha \beta} \nabla_{\beta} u d s-\iint_{S_{1}}\left(d^{\alpha \beta} \nabla_{\alpha} u \nabla_{\beta} u+d^{2} u^{2}\right) d S_{1}=0, \\
& - \\
& -\int_{L} u l_{\alpha} d^{\alpha \beta} \nabla_{\beta} u d s-\iint_{S_{2}}\left(d^{\alpha \beta} \nabla_{\alpha} u \nabla_{\beta} u+d^{2} u^{2}\right) d S_{2}=0 .
\end{aligned}
$$

By adding these equalities we obtain

$$
\begin{equation*}
\iint_{s}\left(d^{\alpha \beta} \nabla_{\alpha} u \nabla_{\beta} u+d^{2} u\right) d S=0 . \tag{14}
\end{equation*}
$$

Since $d^{\alpha \beta} \nabla_{\alpha} u \nabla_{\beta} u \geq 0, \quad d^{2}>0$ from (14) is follows that $u=0$, which was to be proved.

The problem under consideration is thus reduced to the determination of the globally regular particular solution of the non-homogeneous equation

$$
\begin{equation*}
\sigma^{\prime} \nabla_{\alpha}\left(d^{\alpha \beta} \nabla_{\beta} p\right)-\frac{1}{h}\left[1-2\left(1-\sigma^{\prime}\right) h H\right] p+\Phi=0 . \tag{15}
\end{equation*}
$$

It remains to show that if equation (15) has globally regular solution, then the middle surface $S: x^{3}=0$ of the shell is neutral. To do this we have to show first that the tangential stress field vanishes on S, i.e. it should be shown that the equation

$$
\begin{equation*}
\frac{1}{\sqrt{a}} \partial_{\alpha}\left(\sqrt{a} \boldsymbol{T}^{\alpha}\right) \equiv \frac{1}{\sqrt{a}} \partial_{\alpha}\left(\sqrt{a} T^{\alpha \beta} \boldsymbol{r}_{\beta}\right)=0 \tag{16}
\end{equation*}
$$

has no globall solution, except trivial $T_{\alpha \beta}=0$. It is evident since, with respect to isometric-conjugate coordinates x, y, equation (16) is equivalent to the homogeneous generalized Cauchy-Riemann equation

$$
\partial_{\bar{z}} w-B \bar{w}=0, \quad(z=x+i y)
$$

where

$$
\begin{equation*}
w=\frac{1}{2} a K^{\frac{1}{4}}\left(T^{11}-T^{22}-2 i T^{12}\right), \quad T^{11}+T^{22}=0 . \tag{17}
\end{equation*}
$$

The complex stress function w is continuous on the whole plane E of the complex variable $z=x+i y$ and at infinity satisfies the condition

$$
w=0\left(|z|^{-4}\right) .
$$

This implies, in view of the generalized Liouville theorem, that $w=0$. then from (17) it follows that $T^{\alpha \beta}=0$, which was to be proved.

Acknowledgment. The designated project has been fulfilled by a financial support of Shota Rustaveli National Science Foundation (Grant SRNSF/FR /358/5-109/14).

REFERENCES

1. Vekua I. N. Shell Theory: General Methods of Construction, Pitman Advanced Publishing Program. Boston-London-Melburne, 1985.

Received 05.09.2017; revised 10.10.2017; accepted 12.11.2017.
Author's address:
T. Meunargia
I. Vekua Institute of Applied Mathematics of
I. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186
Georgia
E-mail: tengiz.meunargia@viam.sci.tsu.ge

