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TO PROBLEM OF HYDRODYNAMICS OF COLLECTOR HEAT EXCHANGERS

Gadiyeva S. S., Gahramanov P. F.

Abstract. The devices equipped with collectors for distribution (collection) of flow through
a permeable (slotted, perforated packed) surface belong to heat exchangers or switch- gears
of the collector type. Typical feature of this class of heat exchangers is that in the course
of coolant’s motion due to outflow or inflow of the mass, the mass consumption of the main
flow changes.
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Statement of the problem and its solution

Collector systems are widely used in power engineering, chemical and metallurgical pro-
ductions, agricultural technology, drilling, cooling of parallel fuel elements in reactors, ecology,
purification systems in pipeline transportation of oil or gas, etc. [2].

The main problems arising in the development of collector systems is associated with
the need to ensure the distribution of the flow of medium between parallel canals according
to a certain law with a minimum pressure drop (most often uniformly). Mathematically,
these problems are reduced to the study of patterns of flow motion with mass transfer (in
canals with permeable walls), for which application of ordinary equations (for example of
Navier-Stocks or Euler) of motion of fluid in pipelines (canals) is impossible [1].

The mass transfer processes in collector heat exchange devices and systems are very com-
plex and they have not been solved yet by the exact methods of hydrodynamics. Therefore,
in this paper we consider the solution of this (very important for practice) problem using
general equations of motion of the flow with external mass transfer. The solution is given in
a quasi one-dimensional formulation[3].

For deriving dynamic equations of one-dimensional flow of medium with continuous
change in mass, we accept that the direction of fluid motion coincides with hydrodynamic
axis (of a pipe, canal), and attachment or detachment of the mass takes place at some angel.
Equation of dynamics of perfect fluid with external mass transfer [4] is the starting point for
further calculations:
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where ~υ, ~F is a vector of velocity and mass forces; P,m, ρ is pressure, mass and density of
fluid; ~u is a velocity vector of attached (or detached) mass; q is specific attached (or detached)
mass of fluid (provided attachment of the mass q > 0, provided detached q < 0). Projecting
the vector equation ω = B cos (Z/2) cos ωt, (where B is amplitude of velocity pulsations,
Z = 4πz/λ, z is a coordinate; λ and ω are wave length and frequency of forced pulsations,
respectively) on the corresponding coordinate axes, we write
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We multiply the first equation of system (2) by dx, the second one by dy and the third
one by dz, put them together and get:

(υxdυx + υydυy + υzdυz) = (Fxdx + Fydy + Fzdz)
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where υx = dx/dt, υy = dy/dt, υz = dz/dt.
Taking into account υxdυx + υydυy + υzdυz = d
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∂z dz = dP , as P = P (x, y, z), we represent expression (3) in the form
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Denote the average speed of the jet of the basic fluid flow by υ, the average jet of the at-
tached (or detached) mass by u. Then we can write υx = υ cos (υ, x), υy = υ cos (υ, y),
υz = υ cos (υ, z) and ux = u cos (u, x), uy = u cos (u, y), uz = u cos (u, z). Substitut-
ing them in equation (4) and taking into account [cos(υ, x) cos(u, x) + cos(υ, y) cos(u, y +
cos(υ, z) cos(u, z)] = cos(υ, u), we get

d

(
υ2

2
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= Fxdx + Fydy + Fzdz − dP

ρ
+ (u∗ − υ) υ

dm

m
, (5)

where u∗ = u cos (υ, u) is the projection of the average speed of the jet of the attached (or
detached) mass on the direction of the average speed of the jet of the basic fluid flow. Take
into account that the mass forces acting on the fluid have a potential (we can make this
assumption because the mass force is mostly the gravity, and this as known has a potential),
i.e. there exists the function Φ (x, y, z) that satisfies the condition Fx = ∂Φ/∂x , Fy = ∂Φ/∂y,
Fz = ∂Φ/∂z. Consequently, Fxdx + Fydy + Fzdz = dΦ = −gdz, (since Fx = 0, Fy = 0,
Fz = −g is acceleration of gravity). Then after the transformation equation (5) takes the
form

d
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)
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υ2dm

gm
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where k = u∗/υ; γ = ρg is specific gravity of fluid.
This is just the equation of one-dimensional flow of jet of perfect fluid with a change in

mass. When there is no attached (or detached) mass (i.e. if we ignore the term (k − 1) υ2dm/mg
taking into account mass variability), from this equation as a particular case, we get the known
Bernoulli-Euler equation d

(
υ2/2g + P/γ + z

)
= 0, that is the basic equation of hydrodynam-

ics of one-dimensional flow of medium (with a constant mass of fluid) [5].
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From equation (6) it follows that this equation allows to solve a number of applied prob-
lems of hydrodynamics of one-dimensional flow of medium with continuous change in mass,
covering the cases when resistance (friction) forces are insignificant. When the fluid flows in
real conditions (at the expense of viscosity and turbulence) there arise friction forces that
lead to loss of energy (of hydrodynamic head) along the length of the fluid flow. Moreover,
into the equation of hydrodynamics of one-dimensional flow of fluid we must introduce the
correction dhf , that takes into account the frictional pressure loss. Then we can represent
equation (6) in the form

d

(
υ2

2g
+

P

γ
+ z + hf

)
= (k − 1)

υ2dm

gm
. (7)

When establishing (6) or(7) it was accepted that velocity of individual fluid jets are the
same. Passing to the whole flow of real fluid of finite sizes, it is necessary to take into account
the nonuniformity of speed distribution over the section. Moreover, instead of real field of
velocities in cross section of the flow some average velocity dependent on the accepted method
of averaging, is considered [5].

Let us consider the motion of the whole flow of finite sizes as totality of elementary jets
moving with different velocities. Denote the second mass flow of jets by m = ρυdω (where
dω is the area of section of the jet). Then after appropriate transformation and integration
over the cross sectional area of the flow ω, equation (7) will take the form
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or

−dy =
α0

g
d

(
ῡ2
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where y = z + P/γ;α0 =
(∫

ω υ2dω
) /

ῡQ is the coefficient taking into account nonuniformity
of velocity distribution in the cross section of the flow (α0 > 1); Q is the volumetric flow of
liquid ; ῡ is the average velocity of the basic flow of liquid; ω is the cross sectional area of
the flow; ῡ∗ is the projection of the average speed of the attachable mass (consumption) on
the direction of the velocity ῡ.

To equation (9) it is necessary to add a flow equation (continuity equation) in the following
form [3]

dQ = ±q0dx (10)

where q0 is the intensity of change of the volumetric flow of the liquid (sign “+“ corresponds
to the attachment, and the sign “ − “ to detachment). Thus, equations (9) and (10) repre-
sent mathematical formulation of one-dimensional model of flow of medium with continuous
change in the mass (flow) along the length of the flow. By means of these equations the
problems related to both pressure flows and non-pressure (with free surface) flows.

Let us consider one-dimensional flow of fluid in pressure collector systems with
permeable (porous of perforated) walls. The typical feature of such systems is that in these
systems along the path of fluid motion as a consequence of inflow (blowing) or outflow (suc-
tion), there happens change of the flow velocity of the main flow. Furthermore, attachment
or detachment of mass leads to change of longitudinal and transversal velocity of flow in the
collector and also to change of hydrodynamical resistances, degree of turbulence and thick-
ness of the boundary layer [3]. As a consequence of change in the flow and frictional losses,
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there happens pressure change along the length of the collector with permeable walls, and
inertial effects are most often decisive.

Under the attachment (blowing) of flow pressure drops along the length of the canal
(dP/dx < 0). The most complicated character of pressure change holds in the canal with
distribution (suction) of consumption. In them, because of oppositely acting effects (pressure
drop because of hydrodynamic resistance and pressure recovery as a result of distribution of
consumption) the pressure in the parth of motion may both drop and increase. And with
increasing intensity of distribution, inertial effects become predominant and on the length of
the canal, pressure recovery takes place (dP/dx > 0). Thus, consideration of peculiarities of
hydrodynamics of canals with permeable walls shows very complicated character of the fluid
motion.

Below we give the solution to the problems of hydrodynamics of collector systems of
constant section and with permeable walls. We will consider that along the length of the
canal, distribution or attachment of fluid’s flow happens either through perforation or through
slit arranged in its lateral surface. For solving the stated problem, we use equation (9) as
the initial one, that allowing for Q = υω

(
ω = πD2

/
4, D = const

)
and Darcy- Weisbach

formula, for determining pressure (energy) loss on the area of the given dx

dhf =
λυ2

2gD
dx =

8λQ2

gπ2D5
dx, (11)

is representable in the form [3]

dy = (2α0 − k)
16Q

π2gD4
dQ +

8λQ2

π2gD5
dx, (12)

where D is the diameter of the canal (pipe); Q is the flow rate of the medium; λ is the friction
resistance coefficient.

Equation (12) is a mathematical formulation of the quasi-one dimensional model of the
pressure flow motion of the medium with continuous change in consumption by means of
which one can obtain corresponding calculation formulas for determining pressure along the
length of the collector (canal, pipe) of a constant section and with permeable walls. This
equation does not impose restrictions of the flow regime. Here the difference is made by
the choice of the friction resistance coefficient λ. In the canals with permeable walls it can
be represented by the sum of two members λ = λ.T + λn one of which λT depends on the
character of the regime and friction resistance domain [6]

λT = A/Rem (13)

the another, λn on permeability degree (porosity, perforation) ϕ [1]

λn = aϕb. (14)

Therefore, for determining the flow coefficient λ we can use the expression [3]

λ = A/Rem + aϕb (15)

where a = 0, 0106; b = 0, 413; ϕ = nd2
0/4Dl; d0, n is the diameter and the number of holes;

l is the length of the perforated part of the pipe; Re = υD/ν = 4 Q/πDν is the Reynolds
number; ν is the kinematic viscosity coefficient. The coefficient A and the power index m
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depending on the character of the regime (and resistance zone) have different values (see
Table 1).

Dependence of λ for different values of Re and ∆/D

No
Flow regime and resis-
tance zone

Boundary of the
zone

1 Turbulent,
smooth-walled

(3− 4) · 103 ≤ Re ≤
10D/∆

0,3164 0,25

2 Turbulent,
pre-quad-ratic

10D/∆ < Re <
500D/∆

10χ, where
χ = 0, 127 lg ∆̄−
0, 627

0,123

3 Turbulent, quadratic Re ≥ 500D/∆ λquad. =
0, 11(∆/D)0,25

0

Table 1

According to numerous studies, it was established that under turbulent conditions (which
is often found in practice) of flow of Newtonian viscous fluids, three resistance zones are
observed: 1) in the zone of smooth-walled resistance (where λT = f (Re) and (3− 4) · 103 ≤
Re ≤ 10D/∆), the coefficient λT more ofter is determined by the Blasius formula

λT = 0, 3164/Re0,25 (16)

in the zone of quadratic resistance (completely rough pipes λT = f (∆/D) and
Re ≥ 500D/∆) by the Shifrinson formula

λT = 0, 11 (∆/D)0,25 . (17)

In the zone of pre-quadratic resistance (where λT = f (Re,∆/D) and 10D/∆ <Re < 500D/∆)
the following formula [3] is recommended

λT = 10χ/Re0,123, (18)

where χ = 0, 127 lg ∆̄− 0, 627; ∆̄ = ∆/D is the relative roughness.
Comparing (13) and (16) ÷ (18) we can set up the values of the coefficient A and the

exponent m. Their values are given in table 1.
Substituting expression (15) in equation (12), after the corresponding transformations we

get

−dy = (2α0 − k)
16QdQ

π2gD4
+

(
λn +

A (πDν/4)m

Qm

)
8Q2

gπ2D5
dx. (19)

For the conditions of flow of fluid with continuous distribution of consumption
dQ = −q0dx, after integration in the interval (0, x) equation (19) takes (0, x) the form [3]

yx = y0 +
8Q2

0

gπ2D4

[
(2α0 − k)

(
1− z2

x

)
− λnQ0

3Dq0

(
1− z3

x

)
− A (πDν/4)m Q1−m

0

(3−m) Dq0

(
1− z3−m

x

)]
, (20)

where Q0 is the flow rate of the medium in the initial section (before distribution);
q0 = Qn/l = (Q0 −QT ) /l; Qn, QT are travel and transit flow; zx = 1 − αx;
α = (1−QT /Q0) /l.
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Formula (20) enables to determine pressure change along the canal (pipe) with continuous
distribution of consumption for different resistance zones. For the corresponding zone we get
calculated dependences:

1) in the zone of smooth-walled resistance (for m = 0, 25 and A = 0, 3164)

2g(yx − y0)
/
υ2

0 =
[
(2α0 − k)

(
1− z2

x

)]
−

[
λn

(
1− z3

x

)
+ 0, 35

(
1− z2,75

x

) /
Re0,25

0

]
Q0/3Dq0 (21)

2) in the zone of pre-quadratic resistance (for m = 0, 1, 2, 3 and A = 10χ, where χ =
0, 127 lg ∆̄− 0, 627)
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)
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/
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0

]
Q0/3Dq0 (22)

3) in the zone of quadratic resistance (for m = 0 and A = λquad. = 0, 11(∆/D)0,25)

2g(yx − y0)
/
υ2

0 =
[
(2α0 − k)

(
1− z2

x

)]
−

[
(λn + λquad.)

(
1− z3

x

)]
Q0/3Dq0. (23)

In formulas (21)-(23): υ0 = 4Q0

/
πD2; Re0 = 4Q0/πDν. When executing practical

calculations, the coefficient α0 should be taken equal to α0 = 1, 03 ÷1, 1. As for the flow
distribution coefficient k, then in the case of distribution (detachment) of consumption there
are different opinions on it (for example, prof. G.A. Petrov recommends to take k = 0,
prof. P.G. Kisel’ev k = 0, 25 ÷ 0, 5, prof. I.E. Idelchik-k = 0, 5 ÷ 1, 0, prof. I.M. Konovalov
k = 1, 0) [1]. Therefore, this coefficient should be experimentally determined. To this end, and
for establishment of real regularities of fluid motion in canals (pipes) with permeable walls,
special experimental studies were carried out. The experimental stand included a system for
creating pressure, perforated pipe, measuring and regulatory means. The perforated pipe
consisted of the following models:

1) a steel pipe line (made of stainless steel) with inner diameter D = 5, 2 · 10−2m and
D = 3, 42 · 10−2m of the length of the work site l = 2, 2m and l = 3, 6m, diameter of holes
(perforations) d0 = 4 · 10−3m and d0 = 2 · 10−3m;

2) duralumin pipeline with inner diameter D = 2, 075 · 10−2m, length of the working site
l = 2 ÷4m, diameter of holes d0 = 10−3m and 2 · 10−3m. In all models, the length of the
initial section was lm = 2, 0m, of the final section lm = 1, 0m. Inner diameters of the studied
models (pipelines) were found by the ,mean area of the pipe section, determined as the ratio
of the fluid volume (measured by fulfilling the pipe by fluid) to its length. Diameters of holes
(perforations) were determined by means of instrumental microscope.

During the process of experiments, certain total flow at the beginning of the pipe (before
distribution) was skipped, for Re0 = (2 ÷ 9)105 and ratio of consumptions
β = Qπ/Q0 (where Qπ is travel flow distributed along the length of the perforated area,
Qπ = Q0 −Q1, QT is transit flow of liquid in the pipe after distribution, Q0 is total flow in
the pipe before the flow distribution) changed from 0 to 1. After achieving stationary mode
of operation of the installation were fixed: initial Q0, travel Qπ and transit QT flows, and
also change of piezometric height (of pressure) along the working length of the perforated
pipeline. Measurements were carried out by the standard technique. The graphs of change
of flow (velocity) and pressure along the length, and distribution coefficient k of β were con-
structed on the base of experimental data. It was established that fluid flow (velocity) along
the length decreases almost by the linear law, but pressure either decreases (dP/dx < 0), or
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increases (dP/dx > 0) [3]. The observed regularity follows directly from equation (20) and is
determined by the character of the changes in the pulse and pressure loss along the length of
the pipe.
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