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ON THE WELL-POSSEDNESS OF THE CAUCHY PROBLEM FOR NONLINEAR
FUNCTIONAL DIFFERENTIAL EQUATIONS WITH CONCENTRED AND

DISTRIBUTED VARIABLES DELAYS
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Abstract. In the present paper, for the differential equation with concentred and distributed
variables delays, continuity of a solution is proved with respect to perturbations of the initial
data and the right-hand side of equation. Under initial data we imply the collection of the
initial moment, the initial and delay functions. Perturbations of the initial data and right-
hand side of equation are small in a standard norm and in the integral sense, respectively.
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Let I = [a, b] be a finite interval and let Rn be an n-dimensional vector space of points
x = (x1, . . . , xn)>, where > denotes transposition. Suppose that O ⊂ Rn is an open set,
and Ef is the space of functions f : I × O2 × Rn → Rn satisfying conditions: for each fixed
(x1, x2, x3) ∈ O2 × Rn the function f( · , x1, x2, x3) : I → Rn is measurable; for each f ∈ Ef

and compact set K ⊂ O there exist functions Mf,K(t), Lf,K(t) ∈ L1(I; R+), R+ = [0;+∞)
such that for almost all t ∈ I,

|f(t, x1, x2, x3)| ≤ Mf,K(t) ∀ (x1, x2, x3) ∈ K2 × Rn,∣∣f(t, x1, x2, x3)− f(t, y1, y2, y3)
∣∣ ≤ Lf,K(t)

3∑
i=1

|xi − yi|

∀ (x1, y1, x2, y2) ∈ K4 ∀(x3, y3) ∈ Rn × Rn.

Two functions f1, f2 ∈ Ef are said to be equivalent if for every fixed (x1, x2, x3) ∈ O2 × Rn

and for almost all t ∈ I, f1(t, x1, x2, x3)− f2(t, x1, x2, x3) = 0.
The equivalence classes of functions of the space Ef compose a vector space which is

also denoted by Ef ; these classes are called functions and denoted by f again. We introduce
a topology in Ef using the following base of neighborhood of the origin {VK,δ : K ⊂
O is a compact set and δ > 0 is an arbitrary number}, where

VK,δ =
{
δf ∈ Ef : H(δf ;K) ≤ δ

}
and

H(δf : K) = sup
{∣∣∣∣

t′′∫
t′

δf(t, x1, x2, x3) dt

∣∣∣∣ : t′, t′′ ∈ I, x1, x2 ∈ K2, x3 ∈ Rn

}
.

Let D be the set of continuous differentiable scalar functions (delay functions) τ(t), t ∈
[a,+∞), satisfying the conditions

τ(t) ≤ t, τ̇(t) > 0, inf{τ(a) : τ ∈ D
}

:= τ̂ > −∞.
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Let C(I1) be the space of continuous functions ϕ(t) ∈ Rn, t = I1 = [τ̂ , b] equipped with the
norm ‖ϕ‖I1 = sup{ϕ(t) : t ∈ I1}. By Φ = {ϕ ∈ C(I1) : ϕ(t) ∈ O, t ∈ I1} we denote the set
of initial functions.

To each element µ = (t0, τ, θ, ϕ, f) ∈ Λ = [a, b) ×D2 × Φ × Ef we assign the functional
differential equation with concentrated and distributed delay (prehistory) on the interval
[τ(t), t]

ẋ(t) = f

(
t, x(t), x(τ(t)),

t∫
θ(t)

σ(s, x(s)) ds

)
(1)

with the continuous initial condition

x(t) = ϕ(t), t ∈ [τ̂ , t0], (2)

where σ(s, x), (s, x) ∈ I1 ×O is a given function satisfying the following conditions: for each
fixed x ∈ O the function σ( · , x) : I → Rn is measurable; for each compact set K ⊂ O there
exist functions MK(t), LK(t) ∈ L1(I; R+) such that for almost all t ∈ I1

|σ(t, x)| ≤ MK(t), |σ(t, x)− σ(t, y)| ≤ LK |x− y| (x, y) ∈ K2.

Definition 1. Let µ = (t0, τ, θ, ϕ, f) ∈ Λ. A function x(t) = x(t, µ) ∈ O, t ∈ [τ̂ , t1],
t1 ∈ (τ0, b], is called a solution of (1) with the initial condition (2), or a solution corresponding
to the element µ and defined on the interval [τ̂ , t1], if it satisfies (2), is absolutely continuous
on the interval [t0, t1] and satisfies (1) almost everywhere on [t0, t1].

To formulate the main result we introduce the following sets:

W (K;α)=
{

δf ∈Ef : ∃Mδf,K(t), Lδf,K(t)∈L1(I; R+),

b∫
a

(Mδf,K(t)+Lδf,K(t)) dt≤α

}
,

where K ⊂ O is a compact set and α > 0 is a fixed number not dependent on δf : the set
W (K;α) is called the set of perturbations of the right side of (1);

B(t00; δ) =
{
t0 ∈ I : |t0 − t00| ≤ δ

}
, V (τ0; δ) =

{
τ ∈ D : ‖τ − τ0‖I < δ

}
,

V1(θ0; δ) =
{
θ ∈ D : ‖θ − θ0‖I < δ

}
, V2(ϕ0; δ) =

{
ϕ ∈ Φ : ‖ϕ− ϕ0‖I < δ

}
,

where t00 ∈ [a, b) is a fixed point, τ0, θ0 ∈ D and ϕ0 ∈ φ are fixed functions: δ > 0 is a fixed
number.

Theorem 1. Let x0(t) be the solution corresponding to µ0 = (t00, τ0, θ0, ϕ0, f0) ∈ Λ and
defined on [τ̂ , t10], t10 < b. Let K1 ⊂ O be a compact set containing a certain neighborhood
of the set K0 = ϕ0(I1) ∪X([t00, t10]). Than the following conditions hold:

• there exist numbers δi > 0, i = 0, 1, such that for each element

µ = (t0, τ, θ, A, ϕ, f0 + δf) ∈ V (µ0;K1, δ0, α)
= B(t00; δ0)× V (τ0; δ0)× V1(θ0; δ)× V2(ϕ0; δ0)×

[
f0 + (W (K1;α) ∩ VK1,δ0)

]
corresponds solution x(t;µ) defined on the interval [τ̂ , t10 + δ1] ⊂ I1 and satisfied the
condition x(t;µ) ∈ K1;
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• for arbitrary ε > 0 there exists a number δ2 = δ2(ε) ∈ (0, δ0) such that the following
inequality holds for any µ ∈ V (µ0;K1, δ2, α):

|x(t;µ)− x(t;µ0)| ≤ ε ∀ t ∈ [γ, t10 + δ1], γ = max{t0, t00};

• for arbitrary ε > 0 there exists a number δ3 = δ3(ε) ∈ (0, δ0) such that the following
inequality holds for any µ ∈ V (µ0;K1, δ3, α):

t10+δ1∫
τ̂

|x(t;µ)− x(t;µ0)| dt ≤ ε.

Obviously, the solution x(t;µ0) is the continuation of the x0(t) and to the element µ =
(t0, τ, θ, ϕ, δ0+δf) ∈ V (µ0;K1, δ0, α) corresponds the perturbed functional differential equation

ẋ(t) = f0

(
t, x(t), x(τ(t)),

t∫
θ(t)

σ(s, x(s)) ds

)
+ δf

(
t, x(t), x(τ(t)),

t∫
θ(t)

σ(s, x(s)) ds

)

with the perturbed initial condition x(t) = ϕ(t), t ∈ (τ̂ , t0].
Theorem is proved by the method given in [1].
In the space Eµ = R×D2 × C(I1)× Ef we introduce the set of variations:

∆ =
{

δµ = (δt0, δτ, δθ, δϕ, δf) ∈ Eµ − µ0 : |δt0| ≤ β, ‖δτ‖I ≤ β,

‖δθ‖I ≤ β, ‖δϕ‖I ≤ β, δf =
k∑

i=1

λiδfi, |λi| ≤ β, i = 1, . . . , k
}

,

where β > 0 is a fixed number and δfi ∈ Ef − f0, i = 1, . . . , k, are fixed functions.
Theorem 2. Let x0(t) be the solution corresponding to µ0 = (t00, τ0, θ0, ϕ0, f0) ∈ Λ and

defined on [τ̂ , t10], ti0 ∈ [a, b], i = 0, 1. Let K1 ⊂ O be a compact set containing a certain
neighborhood of the set K0. Then the following conditions hold:

• there exist numbers ε1 > 0, δ1 > 0 such that for arbitrary (ε, δµ) ∈ (0, ε1) × ∆ the
element µ0 + εδµ ∈ ∆ and there corresponds the solution x(t;µ0 + εδµ) defined on the
interval [τ̂ , t10 + δ1] ⊂ I1. Moreover, x(t;µ0 + εδµ) ∈ K1;

• the following relations are fulfilled

lim
ε→0

sup
{
|x(t;µ0 + εδµ)− x(t;µ0)| : t ∈ [γ, t10 + δ1]

}
= 0,

lim
ε→0

t10+δ1∫
τ̂

∣∣x(t;µ0 + εδµ)− x(t;µ0)
∣∣ dt = 0

uniformly for δµ ∈ ∆, where γ = max{t00, t00 + εδt0}.

Theorem 2 is a simple corollary of Theorem 1.
Theorems on the continuous dependence of the solution when a perturbation of the right-

hand side is small in the integral sense, were proved for various classes of ordinary differential
equations in [2-4] and for differential equations with concentrated delay, in [5-9].
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