ON THE WELL-POSSEDNESS OF THE CAUCHY PROBLEM FOR NONLINEAR FUNCTIONAL DIFFERENTIAL EQUATIONS WITH CONCENTRED AND DISTRIBUTED VARIABLES DELAYS

Dvalishvili Ph., Alkhazishvili L, Iordanishvili M.

Abstract. In the present paper, for the differential equation with concentred and distributed variables delays, continuity of a solution is proved with respect to perturbations of the initial data and the right-hand side of equation. Under initial data we imply the collection of the initial moment, the initial and delay functions. Perturbations of the initial data and right-hand side of equation are small in a standard norm and in the integral sense, respectively.

Keywords and phrases: Well-possedness, perturbation, functional differential equation, concentred delay, distributed delay.

AMS subject classification (2010): 34K27, 34K20, 34K99.

Let I = [a, b] be a finite interval and let \mathbb{R}^n be an *n*-dimensional vector space of points $x = (x^1, \ldots, x^n)^\top$, where \top denotes transposition. Suppose that $O \subset \mathbb{R}^n$ is an open set, and E_f is the space of functions $f : I \times O^2 \times \mathbb{R}^n \to \mathbb{R}^n$ satisfying conditions: for each fixed $(x^1, x^2, x^3) \in O^2 \times \mathbb{R}^n$ the function $f(\cdot, x^1, x^2, x^3) : I \to \mathbb{R}^n$ is measurable; for each $f \in E_f$ and compact set $K \subset O$ there exist functions $M_{f,K}(t), L_{f,K}(t) \in L_1(I; \mathbb{R}_+), \mathbb{R}_+ = [0; +\infty)$ such that for almost all $t \in I$,

$$|f(t, x^{1}, x^{2}, x^{3})| \leq M_{f,K}(t) \ \forall (x^{1}, x^{2}, x^{3}) \in K^{2} \times \mathbb{R}^{n},$$

$$|f(t, x^{1}, x^{2}, x^{3}) - f(t, y^{1}, y^{2}, y^{3})| \leq L_{f,K}(t) \sum_{i=1}^{3} |x_{i} - y_{i}|$$

$$\forall (x^{1}, y^{1}, x^{2}, y^{2}) \in K^{4} \ \forall (x^{3}, y^{3}) \in \mathbb{R}^{n} \times \mathbb{R}^{n}$$

Two functions $f_1, f_2 \in E_f$ are said to be equivalent if for every fixed $(x^1, x^2, x^3) \in O^2 \times \mathbb{R}^n$ and for almost all $t \in I$, $f_1(t, x^1, x^2, x^3) - f_2(t, x^1, x^2, x^3) = 0$.

The equivalence classes of functions of the space E_f compose a vector space which is also denoted by E_f ; these classes are called functions and denoted by f again. We introduce a topology in E_f using the following base of neighborhood of the origin $\{V_{K,\delta} : K \subset O \text{ is a compact set and } \delta > 0 \text{ is an arbitrary number}\}$, where

$$V_{K,\delta} = \left\{ \delta f \in E_f : \ H(\delta f; K) \le \delta \right\}$$

and

$$H(\delta f:K) = \sup \left\{ \left| \int_{t'}^{t''} \delta f(t,x^1,x^2,x^3) \, dt \right| : t',t'' \in I, \ x^1,x^2 \in K^2, \ x^3 \in \mathbb{R}^n \right\}.$$

Let D be the set of continuous differentiable scalar functions (delay functions) $\tau(t), t \in [a, +\infty)$, satisfying the conditions

$$\tau(t) \le t, \ \dot{\tau}(t) > 0, \ \inf\{\tau(a): \ \tau \in D\} := \hat{\tau} > -\infty.$$

Let $C(I_1)$ be the space of continuous functions $\varphi(t) \in \mathbb{R}^n$, $t = I_1 = [\hat{\tau}, b]$ equipped with the norm $\|\varphi\|_{I_1} = \sup\{\varphi(t) : t \in I_1\}$. By $\Phi = \{\varphi \in C(I_1) : \varphi(t) \in O, t \in I_1\}$ we denote the set of initial functions.

To each element $\mu = (t_0, \tau, \theta, \varphi, f) \in \Lambda = [a, b) \times D^2 \times \Phi \times E_f$ we assign the functional differential equation with concentrated and distributed delay (prehistory) on the interval $[\tau(t), t]$

$$\dot{x}(t) = f\left(t, x(t), x(\tau(t)), \int_{\theta(t)}^{t} \sigma(s, x(s)) \, ds\right) \tag{1}$$

with the continuous initial condition

$$x(t) = \varphi(t), \quad t \in [\hat{\tau}, t_0], \tag{2}$$

where $\sigma(s, x)$, $(s, x) \in I_1 \times O$ is a given function satisfying the following conditions: for each fixed $x \in O$ the function $\sigma(\cdot, x) : I \to \mathbb{R}^n$ is measurable; for each compact set $K \subset O$ there exist functions $M_K(t), L_K(t) \in L_1(I; \mathbb{R}_+)$ such that for almost all $t \in I_1$

$$|\sigma(t,x)| \le M_K(t), \quad |\sigma(t,x) - \sigma(t,y)| \le L_K |x-y| \quad (x,y) \in K^2.$$

Definition 1. Let $\mu = (t_0, \tau, \theta, \varphi, f) \in \Lambda$. A function $x(t) = x(t, \mu) \in O$, $t \in [\hat{\tau}, t_1]$, $t_1 \in (\tau_0, b]$, is called a solution of (1) with the initial condition (2), or a solution corresponding to the element μ and defined on the interval $[\hat{\tau}, t_1]$, if it satisfies (2), is absolutely continuous on the interval $[t_0, t_1]$ and satisfies (1) almost everywhere on $[t_0, t_1]$.

To formulate the main result we introduce the following sets:

$$W(K;\alpha) = \left\{ \delta f \in E_f : \exists M_{\delta f,K}(t), L_{\delta f,K}(t) \in L_1(I;\mathbb{R}_+), \int_a^b (M_{\delta f,K}(t) + L_{\delta f,K}(t)) dt \le \alpha \right\},$$

where $K \subset O$ is a compact set and $\alpha > 0$ is a fixed number not dependent on δf : the set $W(K; \alpha)$ is called the set of perturbations of the right side of (1);

$$B(t_{00};\delta) = \{t_0 \in I : |t_0 - t_{00}| \le \delta\}, \quad V(\tau_0;\delta) = \{\tau \in D : ||\tau - \tau_0||_I < \delta\}, \\ V_1(\theta_0;\delta) = \{\theta \in D : ||\theta - \theta_0||_I < \delta\}, \quad V_2(\varphi_0;\delta) = \{\varphi \in \Phi : ||\varphi - \varphi_0||_I < \delta\},$$

where $t_{00} \in [a, b)$ is a fixed point, $\tau_0, \theta_0 \in D$ and $\varphi_0 \in \phi$ are fixed functions: $\delta > 0$ is a fixed number.

Theorem 1. Let $x_0(t)$ be the solution corresponding to $\mu_0 = (t_{00}, \tau_0, \theta_0, \varphi_0, f_0) \in \Lambda$ and defined on $[\hat{\tau}, t_{10}]$, $t_{10} < b$. Let $K_1 \subset O$ be a compact set containing a certain neighborhood of the set $K_0 = \varphi_0(I_1) \cup X([t_{00}, t_{10}])$. Than the following conditions hold:

• there exist numbers $\delta_i > 0$, i = 0, 1, such that for each element

$$\mu = (t_0, \tau, \theta, A, \varphi, f_0 + \delta f) \in V(\mu_0; K_1, \delta_0, \alpha)$$

= $B(t_{00}; \delta_0) \times V(\tau_0; \delta_0) \times V_1(\theta_0; \delta) \times V_2(\varphi_0; \delta_0) \times [f_0 + (W(K_1; \alpha) \cap V_{K_1, \delta_0})]$

corresponds solution $x(t;\mu)$ defined on the interval $[\hat{\tau}, t_{10} + \delta_1] \subset I_1$ and satisfied the condition $x(t;\mu) \in K_1$;

• for arbitrary $\varepsilon > 0$ there exists a number $\delta_2 = \delta_2(\varepsilon) \in (0, \delta_0)$ such that the following inequality holds for any $\mu \in V(\mu_0; K_1, \delta_2, \alpha)$:

$$|x(t;\mu) - x(t;\mu_0)| \le \varepsilon \ \forall t \in [\gamma, t_{10} + \delta_1], \ \gamma = \max\{t_0, t_{00}\};$$

• for arbitrary $\varepsilon > 0$ there exists a number $\delta_3 = \delta_3(\varepsilon) \in (0, \delta_0)$ such that the following inequality holds for any $\mu \in V(\mu_0; K_1, \delta_3, \alpha)$:

$$\int_{\widehat{\tau}}^{t_{10}+\delta_1} |x(t;\mu)-x(t;\mu_0)| \, dt \le \varepsilon.$$

Obviously, the solution $x(t;\mu_0)$ is the continuation of the $x_0(t)$ and to the element $\mu = (t_0, \tau, \theta, \varphi, \delta_0 + \delta f) \in V(\mu_0; K_1, \delta_0, \alpha)$ corresponds the perturbed functional differential equation

$$\dot{x}(t) = f_0\left(t, x(t), x(\tau(t)), \int\limits_{\theta(t)}^t \sigma(s, x(s)) \, ds\right) + \delta f\left(t, x(t), x(\tau(t)), \int\limits_{\theta(t)}^t \sigma(s, x(s)) \, ds\right)$$

with the perturbed initial condition $x(t) = \varphi(t), t \in (\hat{\tau}, t_0].$

Theorem is proved by the method given in [1].

In the space $E_{\mu} = \mathbb{R} \times D^2 \times C(I_1) \times E_f$ we introduce the set of variations:

$$\Delta = \left\{ \delta\mu = (\delta t_0, \delta\tau, \delta\theta, \delta\varphi, \delta f) \in E_\mu - \mu_0 : \ |\delta t_0| \le \beta, \ \|\delta\tau\|_I \le \beta, \\ \|\delta\theta\|_I \le \beta, \ \|\delta\varphi\|_I \le \beta, \ \delta f = \sum_{i=1}^k \lambda_i \delta f_i, \ |\lambda_i| \le \beta, \ i = 1, \dots, k \right\}$$

where $\beta > 0$ is a fixed number and $\delta f_i \in E_f - f_0$, $i = 1, \dots, k$, are fixed functions.

Theorem 2. Let $x_0(t)$ be the solution corresponding to $\mu_0 = (t_{00}, \tau_0, \theta_0, \varphi_0, f_0) \in \Lambda$ and defined on $[\hat{\tau}, t_{10}], t_{i0} \in [a, b], i = 0, 1$. Let $K_1 \subset O$ be a compact set containing a certain neighborhood of the set K_0 . Then the following conditions hold:

- there exist numbers $\varepsilon_1 > 0$, $\delta_1 > 0$ such that for arbitrary $(\varepsilon, \delta\mu) \in (0, \varepsilon_1) \times \Delta$ the element $\mu_0 + \varepsilon \delta\mu \in \Delta$ and there corresponds the solution $x(t; \mu_0 + \varepsilon \delta\mu)$ defined on the interval $[\hat{\tau}, t_{10} + \delta_1] \subset I_1$. Moreover, $x(t; \mu_0 + \varepsilon \delta\mu) \in K_1$;
- the following relations are fulfilled

$$\lim_{\varepsilon \to 0} \sup \left\{ |x(t;\mu_0 + \varepsilon \delta \mu) - x(t;\mu_0)| : t \in [\gamma, t_{10} + \delta_1] \right\} = 0$$
$$\lim_{\varepsilon \to 0} \int_{\widehat{\tau}}^{t_{10} + \delta_1} |x(t;\mu_0 + \varepsilon \delta \mu) - x(t;\mu_0)| dt = 0$$

uniformly for $\delta \mu \in \Delta$, where $\gamma = \max\{t_{00}, t_{00} + \varepsilon \delta t_0\}$.

Theorem 2 is a simple corollary of Theorem 1.

Theorems on the continuous dependence of the solution when a perturbation of the righthand side is small in the integral sense, were proved for various classes of ordinary differential equations in [2-4] and for differential equations with concentrated delay, in [5-9].

REFERENCES

1. Dvalishvili Ph., Nachaoui A., Nachaoui M., Tadumadze T. On the well-posedness of the Cauchy problem for a class of differential equations with distributed delay and the continuous initial condition. *Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb.*, **43**, 1 (2017), 146-160.

2. Gamkrelidze R. V. Principles of optimal control theory. Revised edition. Mathematical concepts and methods in science and engineering, Vol. 7. *Plenum Press, New York-London*, 1978.

3. Gamkrelidze R. V., Kharatishvili G. L. Extremal problems in linear topological spaces (Russian). *Izv. Akad. Nauk SSSR Ser. Mat.*, **33** (1969), 781-839.

4. Krasnosel'skiĭ M. A., Kreĭn S. G. On the principle of averaging in nonlinear mechanics (Russian). Uspehi Mat. Nauk (N.S.), **10**, 3(65) (1955), 147-152.

5. Kharatishvili G. L., Machaidze Z. A., Markozashvili N. I., Tadumadze T. A. Abstract variational theory and its application to optimal problems in time lag (Russian). *Metsniereba*, Tbilisi, 1973.

6. Kharatishvili G., Tadumadze T., Gorgodze N. Continuous dependence and differentiability of solution with respect to initial data and right-hand side for differential equations with deviating argument. *Mem. Differential Equations Math. Phys.*, **19** (2000), 3-105.

7. Kharatishvili G. L., Tadumadze T. A. Formulas for the variation of a solution and optimal control problems for differential equations with retarded arguments (Russian). *Sovrem. Mat. Prilozh.*, Optimal. Upr., **25** (2005), 3-166; transmaltion in *J. Math. Sci.* (*N.Y.*), **140**, 1 (2007), 1-175.

8. Tadumadze T. A. Some problems in the qualitative theory of optimal control (Russian). *Tbilis.* Gos. Univ., Tbilisi, 1983.

9. Tadumadze T., Gorgodze N. Variation formulas of a solution and initial data optimization problems for quasi-linear neutral functional differential equations with discontinuous initial condition. *Mem. Differ. Equ. Math. Phys.*, **63** (2014), 1-77.

Received 07.05.2017; revised 21.07.2017; accepted 05.09.2017.

Author's address:

Ph. Dvalishvili , L. Alkhazishvli, M. Iordanishvili
Department of Computer Sciences
I. Javakhishvili Tbilisi State University
13, University St., 0186, Tbilisi
Georgia
E-mail: pridon.dvalishvili@tsu.ge