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SOLUTION OF SOME BOUNDARY VALUE PROBLEMS OF STATICS OF THE
THEORY OF ELASTIC MIXTURE IN AN INFINITE DOMAIN WITH AN

ELLIPTICAL HOLE

Svanadze K.

Abstract. For homogeneous equation of statics of the linear theory of elastic mixture in

the case of an outside the elliptical domain we consider the two boundary value problems

which are analogous to III and IV exterior boundary value problem of the classic theory of

elasticity. Applying the representation of the stress vector by the so-called mutually adjoint

vector functions we obtain effective solutions (Poisson type formulas) of the problems.
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1. Introduction

The basic two-dimensional boundary value problems statics of the linear theory of
elastic mixtures are studied in [1], [3]-[7] and also by many other authors.

In the paper we consider two boundary value problems for homogeneous equation
of statics of the linear theory of elastic mixtures in an infinite domain with an elliptical
hole, which for the cases of simple connected finite and infinite domains has been
studied by M. Basheleishvili in [5].

To solve the problems we use the method described in [2, §28] and [4]. Applying the
representation of the stress vector by the so-called mutually adjoint vector-functions
the problems are reduced to the singular integral equations with Hilbert kernels, and
owing to the above result, the solution of the problems can be reduced to the first order
linear differential equations.

The solutions of the problems are represented in the form of Poisson type formulas.

2. Some auxiliary formulas and operators

The homogeneous equation of statics of the theory of elastic mixtures in a complex
form looks as follows [4]
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a1 = µ1−λ5, a2 = µ2−λ5, c = µ3+λ5, d2 = a1a2− c2, l1+ l4 =
a2 + b2
d1

, (2.2)

l2 + l5 = −c+ d

d1
, l3 + l6 =

a1 + b1
d1

, d1 = (a1 + b1)(a2 + b2)− (c+ d)2,

b1 = µ1 + λ1 + λ5 − α2
ρ2
ρ
, b2 = µ2 + λ2 + λ5 + α2

ρ1
ρ
, ρ = ρ1 + ρ2,

α2 = λ3 − λ4, d = µ3 + λ3 − λ5 − α2
ρ1
ρ

≡ µ3 + λ4 − λ5 + α2
ρ2
ρ
.

Here µ1, µ2, µ3 and λp, p = 1, 5 are elastic modules characterizing mechanical
properties of a mixture, ρ1 and ρ2 are its particular densities. The elastic constants
µ1, µ2, µ3, λp, p = 1, 5 and particular densities ρ1 and ρ2 will be assumed to satisfy
the conditions of inequality [1].

In [4] M. Basheleishvili obtained the following representations:

U =

(
u1 + iu2
u3 + iu4

)
= mφ(z) +

1

2
lzφ′(z) + ψ(z), (2.3)
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(
(Tu)2 − i(Tu)1
(Tu)4 − i(Tu)3

)
=

∂

∂S(x)
(−2φ(z) + 2µU(x)) , (2.4)

where φ = (φ1, φ2)
T and ψ = (ψ1, ψ2)

T are arbitrary analytic vector-functions, (TU)p
(p = 1, 4) are components of the stress vector [1],
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]
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∂
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, n1 and n2 are the projections of the unit vector of the normal

onto the axes x1 and x2.
Formulas (2.3) and (2.4) are analogous to the Kolosov-Muskhelishvilis formulas for

the linear theory of elastic mixture.
To investigate the problems we use the vector [4]
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)
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]
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As is known (see [4]) V is a vector adjoint to U .
From (2.3) , (2.4) and (2.5) we obtain
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)
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]
. (2.6)
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3. Statement of the posed boundary value problems and the uniqueness
theorems

Let an infinite isotropic plane be weakened by an elliptic hole with the semi-axis a
and b (a > b). This unbound domain will be denoted by D−. The symmetry axis of
the ellipse is taken at the coordinate axis, and the major axis coincides with the real
axis ox1. By L we denote the elliptic curve (a cos θ, b sin θ) ∈ L.

We consider the following boundary value problems: Find in the domain D− a
vector U = (u1 + iu2, u3 + iu4)

T which belongs to the class C2(D−)
∩
C1,α(D− ∪

L)
is a solution of equation (2.1) and satisfies only one of the following conditions on the
boundary L

(nU)− = f (1), (STU)− = f (2), (3.1)

(SU)− = F (1), (nTU)− = F (2), (3.2)

where f (j) and F (j), j = 1, 2 are the given scalar complex functions on the boundary
L, note that

(f (1), F (1)) ∈ C1,α(L), (f (2), F (2)) ∈ σ0,α(L), α > 0.

In the vicinity of infinity the vector U = (u1 + iu2, u3 + iu4)
T satisfies the following

conditions:

uk = 0(1), |x|2∂uk
∂xj

= 0(1), j = 1, 2, k = 1, 4, |x|2 = x21 + x22.

It will be assumed that the stress and rotation components vanish at infinity; more-
over, we suppose that the principal vector of external forces applied to the contour of
the hole is equal to zero.

Let us denote by (III∗)
− and (IV∗)

− the problems (2.1), (3.1) and (2.1), (3.2)
respectively.
The following assertion is true [5].

Theorem 3.1. The problems (III∗)
− and (IV∗)

− are uniquely solvable.

4. Solution of the (III∗)
− and (IV∗)

− problems

For the solution of the problems we use the method developed in [2]. Let us note
that the solution of the first BVP of statics of the linear theory of elastic mixture for
an infinite plane with an elliptic hole reads as ([7] or [3])

U(x) =
1

2π

∫ 2π

0

(1− τ1τ1)F (θ)dθ

1− τ1eiθ − τ1e−iθ + τ1τ1
− KA0

2π

∫ 2π

0

F (θ)τ1e
−iθdθ

(1− τ1e−iθ)2
, (4.1)

where U− = F ∈ C1,α(L), α > 0, (a cos θ, b sin θ) ∈ L; K = −1
2
lm−1 (see (2.2)),

A0 = (1− η1η1)
(
η−1
1 − η2

)
(η1 − η2)

−1 , τ1 = η−1
1 , |τ1| < 1,
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η1 =
z +

√
z2 − a2 + b2

a+ b
, η2 =

z −
√
z2 − a2 + b2

a+ b
, z = x1 + ix2.

If x = (x1x2) belong to the boundary of the ellipse then x1 = a cos θ0, x2 = b sin θ0,
and τ1 = e−iθ, τ1 = eiθ0 and A0 = 0.

Further, note that the adjoint vector of (4.1) has the form

V (x) =

(
V1 + iV2
V3 + iV4

)
=

1

2πi

∫ 2π

0

(τ1e
iθ − τ1e

−iθ)F (θ)dθ

1− τ1eiθ − τ1e−iθ + τ1τ1
+

(4.2)

+
KA0

2πi

∫ 2π

0

F (θ)τ1e
−iθdθ

(1− τ1e−iθ)2
.

10. A solution of the problem (III)− is sought in the form (see 4.1.)

U(x) =
1

2π

∫ 2π

0

(1− τ1τ1)(nq + Sχ)dθ

1− τ1eiθ − τ1e−iθ + τ1τ1
− KA0

2π

∫ 2π

0

τ1e
−iθ(nq + Sχ)dθ

(1− τ1e−iθ)2
, (4.3)

where (nU)− = q = f (1) is given by (3.1) and (SU)− = χ is the unknown function

n = (n1, n2)
T =

(b cos θ, a sin θ)T√
a2 sin2 θ + b2 cos2 θ

,

(4.4)

S = (−n2, n1)
T =

(−a sin θ, b cos θ)T√
a2 sin2 θ + b2 cos2 θ

.

We remark also that, on (a cos θ0, b sin θ0) ∈ L

(U(θ0))
− = n(θ0)q(θ0) + S(θ0χ(θ0)), (4.5)

(V (θ0))
− =

∫ 2π

0

ctg
θ − θ0

2
[n(θ)q(θ) + S(θ)χ(θ)] dθ. (4.6)

Using now (2.6) and taking into account (4.5) and (4.6) for the boundary value of
the stress vector we obtain

√
a2 sin2 θ0 + b2cos2θ0(TU)

− = (2µ−m−1)

(
dU

dθ0

)−

+
m−1

2πi

∫ 2π

0

ctg
θ − θ0

2

(
dU

dθ

)−

dθ. (4.7)

If we take into account (4.4) and condition (STU)− = f (2) (see(3.1)) then (4.7) can
be rewritten in the form of one equation
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[
(2µ−m−1)

(
dU

dθ0

)−
](

−a sin θ0
b cos θ0

)
+

[
m−1

2πi

∫ 2π

0

ctg
θ − θ0

2

(
dU

dθ

)−

dθ

]

×
(

−a sin θ0
b cos θ0

)
= (a2 sin2 θ0 + b2 cos2 θ0)f

(2)(θ0). (4.8)

Represent U− in the form (see (3.1) and (4.4))

(U(θ0)
− =

(
b cos θ0
a sin θ0

)
f(θ0) +

(
−a sin θ0
b cos θ0

)
h(θ0), (4.9)

where

f(θ0) =
f (1)(θ0)√

a2 sin2 θ0 + b2 cos2 θ0
, (4.10)1

h(θ0) =
(S(θ0)U(θ0))

−√
a2 sin2 θ0 + b2 cos2 θ0

=
χ(θ0)√

a2 sin2 θ0 + b2 cos2 θ0
. (4.10)2

Substituting (4.9) in (4.8) after obvious transformations we get

[
(2µ−m−1)H

′
(θ0)

]( −a sin θ0
b cos θ0

)
+

[
m−1

2πi

∫ 2π

0

ctg
θ − θ0

2
H

′
(θ)dθ

](
−a sin θ0
b cos θ0

)
= Φ(θ0), (4.11)

where

H(θ) =

(
−a sin θ
b cos θ

)
h(θ), (4.12)

Φ(θ0) = (a2 sin2 θ0+b
2 cos2 θ0)f

(2)(θ0)−(2µ−m−1)

[(
b cos θ0
a sin θ0

)
f(θ0)

]′ (
−a sin θ0
b cos θ0

)

−m
−1

2πi

∫ 2π

0

ctg
θ − θ0

2

[(
b cos θ
a sin θ

)
f(θ)

]′

dθ

(
−a sin θ0
b cos θ0

)
. (4.13)

Bearing in mind the formulas

ctg
θ − θ0

2

(
−a sin θ0
b cos θ0

)
=

(
a cos θ + a cos θ0
b sin θ + b sin θ0

)
+ ctg

θ − θ0
2

(
−a sin θ
b cos θ

)
,

after some calculations we can rewrite (4.11) in the form
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[
(2mµ− E)H

′
(θ)

]
m−1

(
−a sin θ0
b cos θ0

)
+

1

2πi

∫ 2π

0

ctg
θ − θ0

2
H

′
(θ)m−1

(
−a sin θ
b cos θ

)
dθ − iM = Φ(θ0). (4.14)

where

M =
1

2π

∫ 2π

0

H(θ)m−1

(
−a sin θ
b cos θ

)
dθ. (4.15)

Applying the formula of composition of integrals with Hilbert kernels (see[2], §28)

1

4π2

∫ 2π

0

ctg
θ0 − θ∗

2
dθ0

∫ 2π

0

ctg
θ − θ0

2
P (θ)dθ = −P (θ∗) + 1

2π

∫ 2π

0

P (θ)dθ,

from (4.14) we find

H
′
(θ0)m

−1

(
−a sin θ0
b cos θ0

)
+

1

2πi

∫ 2π

0

ctg
θ − θ0

2

[
(2mµ− E)H

′
(θ)

]
m−1

(
−a sin θ
b cos θ

)
dθ

−N =
1

2πi

∫ 2π

0

ctg
θ − θ0

2
ϕ(θ)dθ, (4.16)

where

N =
1

2π

∫ 2π

0

H
′
(θ)m−1

(
−a sin θ
b cos θ

)
dθ. (4.17)

The equalities (4.14) and (4.16) result in[
(2mµ− 2E)H

′
(θ0)

]
m−1

(
−a sin θ0
b cos θ0

)

− 1

2πi

∫ 2π

0

ctg
θ0 − θ∗

2

[
(2mµ− 2E)H

′
(θ)

]
m−1

(
−a sin θ
b cos θ

)
dθ +N − iM

= ϕ(θ0)−
1

2πi
)

∫ 2π

0

ctg
θ − θ0

2
ϕ(θ)dθ (4.18)

Thus, for determining
[
(2mµ− 2E)H

′
(θ)

]
m−1

(
−a sin θ
b cos θ

)
we have obtained a

singular integral equation (4.18) with the Hilbert kernel.
Taking into account the fact that, when f (1) = f (2) = 0,then U(x) = 0, x ∈ D−,

(see theorem 3.1), also ϕ = 0, h = 0, H = 0 and M = N = 0, (see (4.10)1, (4.10)2,
(4.15) and (4.17)) we can conclude that solution of the equation (4.18) is
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[
(2mµ− 2E)H

′
(θ)

]
m−1

(
−a sin θ
b cos θ

)
= ϕ(θ)−N + iM.

The last formula yields (see (4.12))

h
′
(θ) +

1

2

r
′
(θ)

r(θ)
h(θ =

ϕ(θ)

r(θ)
− N − iM

r(θ)
, (4.19)

where

r(θ) = 2

[
a2

(
µ1 −

m3

∆0

)
sin2 θ − ab

(
µ3 +

m2

∆0

)
sin2θ + b2

(
µ2 −

m1

∆0

)
cos2 θ

]
̸= 0,

0 ≤ θ ≤ 2π. (4.20)

Here (see [6])

(
µ1 −

m3

∆0

)(
µ2 −

m1

∆0

)
−

(
µ3 +

m2

∆0

)2

> 0, ∆0 = m1m3 −m2
2 > 0. (4.21)

From (4.19) by integration we obtain

h(θ) =
C√
r(θ)

+
1√
r(θ)

∫ θ

0

ϕ(θ0)−N + iM)√
r(θ0)

dθ0, (4.22)

where C is an arbitrary constant
As it is known conditions f (1) = f (2) = 0 imply that U(x) = 0, x ∈ D− and

ϕ = H = h =M = N = 0. Therefore from (4.22) we obtain C = 0 and finally

h(θ) =
1√
r(θ)

∫ θ

0

ϕ(θ0)−N + iM√
r(θ0)

dθ. (4.23)

Now let us find N − iM . Since h(θ) is periodic with the period 2π, i.e. h(θ+2π) =
h(θ) (see (4.9) (4.10)1 and (4.10)2 and r(2π) = r(0) ̸= 0 (see (4.20) and (4.21)) therefore
from (4.23) we obtain

N − iM =

∫ 2π

0
ϕ(θ)(r(θ))−

1
2 dθ∫ 2π

0
(r(θ))−

1
2 dθ

.

Having found h(θ) by formula (4.10)2 we obtain value of S(θ)χ(θ) and after by (4.3)
we obtain the solution of the problem (III∗)

− represented in the form of Poisson type
formula.

Thus the (III∗)
− boundary value problem is solved. The BVP (IV∗)

− is solved
quite analogously.
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