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THE ISOMETRIC SYSTEM OF COORDINATES AND THE COMPLEX FORM
OF THE SYSTEM OF EQUATIONS FOR THE NON-SHALLOW AND

NONLINEAR THEORY OF SHELLS
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Abstract. In this paper, the 3-D geometrically and physically nonlinear theories of non-

shallow shells are considered. The isometrical system of coordinates is of special interest,

since in this system we can obtain bases equations of the theory of shells in a complex form.

This circumstance makes is possible to apply the methods developed by N. Muskhelishvili and

his disciples by means of the theory of functions of a complex variable and integral equations
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1. Introduction

The refined theory of shells is constructed by reducing the three-dimensional prob-
lems of the theory of elasticity to the two-dimensional problems [1, 2]. I. Vekua con-
structed several versions of the refined linear theory of thin and shallow shells, con-
taining, the regular processes by means of the method of reduction of 3-D problems of
elasticity to 2-D ones [1].

By thin and shallow shells I.Vekua means 3-D shell type elastic bodies satisfying
the following conditions [3]

aβα − x3bβα
∼= αβ

α − h ≤ x3 = x3 ≤ h, α, β = 1, 2, (∗)

where aβα and bβα are mixed components of the metric and curvature tensors of the
midsurface of the shell, x3 is the thickness coordinate and h is the semi-thickness.

In the sequel, under non-shallow shells we wean elastic bodies free from the as-
sumption of the type (*) or, more exactly, the bodies with the conditions

aβα − x3b
β
α ̸= aβα ⇒ |hbβα| ≤ q < 1.

Such kind of shells are called shells with varying in thickness geometry, or non-
shallow shells.

2. System of geometrically and physically nonlinear equations for non-
shallow shells

We write the equation of equilibrium of an elastic shell-type body in a vector form
which is convenient for reduction to the 2-D equations

1
√
g

∂
√
gσ⃗i

dxi
+ Φ⃗ = 0 ⇒ ∇̂iσ⃗

i + Φ⃗ = 0, (1)
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where g is the discriminant of the metric quadratic form of the 3-D domain Ω, ∇̂i are
covariant derivatives with respect to the space coordinates xi, Φ⃗ is an external force,
σ⃗i are the contravariant constituents of the stress vector σ⃗

(
∗
l⃗)
acting in the area with

the normal
∗

l⃗ and representable as the Cauchy formulas as follows

σ⃗
(
∗
l⃗)
= σ⃗i

∗
l i,

∗
l i =

∗

l⃗R⃗i.

A material is said to be hyper-elastic if the stresses are obtained by means of the
strain energy function

σij =
∂∃
∂eij

,

where σij are contravariant components of the stress tensor, ∃ is the strain energy
function, and eij are covariant components of the strain tensor.

The theory of hyper-elasticity of the second order has the form [2, 3]

∃ =
1

2
Eijpqeijepq +

1

3
Eijpqskeijepqesk,

eij =
1

2
(R⃗i∂jU⃗ + R⃗j∂iU⃗ + ∂iU⃗∂jU⃗)

σij = Eijpqepq + Eijpqskepqesk, σ⃗i = σij(R⃗j + ∂jU⃗)

(2)

where Eijpq and Eijpqsk are coefficients of elasticity of the first and second order and
U⃗ is the displacement vector.

Coefficients of elasticity of the first order for isotropic elastic bodies are expressed
by the two Lamé coefficients

Eijpq = λgijgµq + µ(gipgjq + giqgjp), (gij = R⃗iR⃗j) (3)

and coefficients of elasticity of the second order are defined by the formula

Eijpqsk = (E1 + E2)g
ijgpqgsk − E2g

ijgpkgqs + E3g
ipgjqgsk + E4g

isgpqgjk, (4)

where E1, E2, E3 and E4 are modules of elasticity of the second order for isotropic
elastic bodies.

Here R⃗i and R⃗i are covariant and contravariant base vectors of the space.

3. The coordinate system in a shell normally connected with a surface

Let Ω denote a shell and a domain of the space occupied by the shell. Inside the shell,
we consider a smooth surface S with respect to which the shell Ω lies symmetrically.
The surface S is called the midsurface of the shell Ω. To construct the theory of
shells, we use more convenient coordinate system which is normally connected with
the midsurface S. This means that the radius-vector R⃗ of any point of the domain Ω
can be represented in the form

R⃗(x1, x2, x3) = r⃗(x1, x2) + x3n⃗(x1, x2),
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where R⃗ and n⃗ are respectively the radius-vector and the unit vector of the normal of
the surface S(x3 = 0) and (x1, x2) are the Gaussian parameters of the midsurfaces S.

The covariant and contravariant basis vectors R⃗i and R⃗i of the surfaces Ŝ(x3 =
const), and the corresponding basis vectors r⃗i and r⃗ i of the midsurface S (x3 = 0) are
connected by the following relations:

R⃗i = A.j
i. r⃗j = Aij r⃗

j, R⃗i = Ai.
.j r⃗

j = Aij r⃗j, (i, j = 1, 2, 3),

where

A.j
i. =

{
aβα − x3b

β
α, i = α, j = β,

δ3i , j = 3,
r⃗i, r⃗

i =

{
r⃗α, r⃗

α, i = α,

n⃗, n⃗, i = 3,

Ai.
.j =


(1− 2Hx3)a

α
β + x3b

α
β

1− 2Hx3 +Kx2
3

, i = α, j = β,

δ3i , j = 3.

Here (aαβ, a
αβ, aβα) and (bα,β,b

αβ, bβα) are the components (covariant, contravariant and
mixed) of the metric and curvature tensors of the midsurface S. By H and K we
denote a middle and Gaussian curvature of the surface S, where

2H = bαα = b11 + b22, K = b11b
2
2 − b12b

2
1.

It should be noted that for the refined theory of non-shallow shells (Koiter, Naghdi,
Lurie) these relations have the form

R⃗α ∼= (aαβ + x3b
α
β)r⃗

β, R⃗α = (aβα − x3b
β
α)r⃗β.

The main quadratic forms of the midsurface S (x3 = 0) have the forms

I = ds2 = aαβdx
αdxβ, II = Ksds

2 = bαβdx
αdxβ,

where ks is the normal courvative of the S and

aαβ = r⃗αr⃗β, bαβ = −n⃗αr⃗β, ks = bαβs
αsβ, r⃗α = ∂αr⃗, sα =

dxα

ds
.

It is necessary to rewrite the relation (1-4) in terms of the midsurface S of the shell
Ω.

Relation (1) can be written as follows:

1√
a

∂
√
aϑσ⃗α

∂xα
+

∂ϑσ⃗3

∂x3
+ ϑΦ⃗ = 0, (ϑ = 1− 2Hx3 +Kx3).

from (2), (3), (4) we obtain

σ⃗i = σij(R⃗j + ∂jU⃗) = (Eijpq + Eijpqskesk)epq(R⃗j + ∂jU⃗)

⇒ σ⃗i = 1
2
Ai

i1
[M i1j1p1q1 + 1

2
M i1j1p1q1s1k1

×(Ak
k1
r⃗s1∂kU⃗ + As

s1
Ak

k1
∂sU⃗∂kU⃗)]

×(Ap
p1
r⃗q1∂pU⃗ + Aq

q1
r⃗p1∂qU⃗ + Ap

p1
Aq

q1
∂pU⃗∂qU⃗)(r⃗j1 + Aj

j1
∂jU⃗),
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where
M i1j1p1q1 = λai1j1ap1q1 + µ(ai1p1aj1q1 + ai1q1aj1p1)

M i1j1p1q1s1k1 = (E1 + E2)a
i1j1ap1q1 − E2a

i1j1ap1k1qq1s1

+E3a
i1p1aj1q1as1k1 + E4a

i1s1ap1q1aj1k1 ,

(aij = r⃗ir⃗j).

4. Isometric system of coordinates

The isometrical system of coordinates in the surface S is of special interest, since
in this system we can obtain bases equations of the theory of shells in a complex form,
which in turn, allows one for a rather wide class of problems to construct complex
representation of general solutions by means of analytic functions of one variable z =
x′ + ix2. This circumstance makes is possible to apply the methods developed by
N. Muskhelishvili and his disciples by means of the theory of functions of a complex
variable and integral equations [1].

The main quadratic forms in this of coordinates are of the type

I = ds2 = Λ(x1, x2)[(dx1)2 + (dx2)2] = Λ(z, z̄)dzdz̄, (Λ > 0)

II = bαβdx
αdxβ =

1

2
[Q̄dz2 + 2Hdzdz̄ +Qdz̄2],

where

Q =
1

2
(b11 − b22 + 2ib12), 2H = b11 + b22.

Introducing the well-known differential operators

∂

∂z
=

1

2

(
∂

∂x1
− i

∂

∂x2

)
,

∂

∂z̄
=

1

2

(
∂

∂x1
+ i

∂

∂x2

)
and the notation

τ⃗ i =

√
g

a
σ⃗i, F⃗ =

√
g

a
Φ⃗,√

g

a
= ϑ = 1− 2Hx3 +Kx2

3,

we obtain the following complex writing both for the system of equations of equilibrium
and for ”Hooke’s Law”

1

Λ

∂

∂z
[Λ(τ 11 − τ 22 + iτ 12 + iτ 21 )] +

∂

∂z̄
[Λ(τ 11 + τ 22 + iτ 12 − iτ 21 )]

−Λ(Hτ+3 +Qτ̄+3 ) +
∂τ 3+
∂x3

+ F+ = 0,

1

Λ

(
∂Λτ+3
∂z

+
∂Λτ̄+3
∂z̄

)
+H(τ 11 + τ 22 )

+Re[Q̄(τ 11 − τ 22 + iτ 12 − iτ 21 )] +
∂τ 33
∂x3

+ F3 = 0,
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where

τ 11 − τ 22 + i(τ 12 + τ 21 ) = τ⃗+r⃗+ =

√
g

a

{
[λΘ+ µ(R⃗+∂zU⃗ +

¯⃗
R+∂z̄U⃗

+2∂zU⃗∂ z̄U⃗)](R⃗+ + 2∂ z̄U⃗)r⃗+ + µ[2(R⃗+ + ∂ z̄U⃗)∂z̄U⃗(
¯⃗
R+ + 2∂ z̄U⃗)r⃗+

+(R⃗+∂3U⃗ + 2n⃗∂ z̄U⃗ + 2∂ z̄U⃗∂3U⃗)∂3U⃗ ] } ,

τ 11 + τ 22 + i(τ 12 − τ 21 ) =
¯⃗τ+ ¯⃗r+ =

√
g

a

{
λΘ+ µ(R⃗+∂

zU⃗ +
¯⃗
R+∂z̄U⃗

+2∂zU⃗∂z̄U⃗)(
¯⃗
R+ + 2∂zU⃗)r⃗+ + µ[2(

¯⃗
R+∂z̄U⃗ + ∂zU⃗∂ z̄U⃗)

(R⃗+ + 2∂ z̄U⃗)r⃗+ + (R⃗+∂3U⃗ + 2(n⃗+ ∂ z̄U)∂zU ]∂3U⃗+] }

τ+3 = (τ⃗ 1 + iτ 2)n⃗ =

√
g

a

{
2[λΘ+ µ(R⃗+∂zU⃗ +

¯⃗
R+∂z̄U⃗ + 2∂zU⃗∂z̄U⃗)

(n⃗∂ z̄U⃗)] + µ[2(R⃗+∂z̄U⃗ + ∂ z̄U⃗∂zU⃗)(n⃗∂zU⃗)+

(R⃗+∂3U⃗ + 2n⃗∂ z̄U⃗ + 2∂ z̄U⃗∂3U⃗)(1 + ∂3U3)] } ,

τ 3+ = τ⃗ 3r⃗+ =

√
g

a

{
[λΘ+ µ(2n⃗∂3U⃗ + ∂3U⃗∂3U⃗ ]∂3U⃗+

+µ(n⃗∂ z̄U⃗ +
1

2
¯⃗
R+ + ∂3U⃗∂3U⃗∂zU⃗)(R⃗+ + 2∂zU⃗)r⃗+

+(n⃗∂ z̄U⃗ +
1

2
R⃗+∂zU⃗∂3U⃗∂ z̄U⃗)(

¯⃗
R+ + 2∂z̄U⃗)z⃗+ }

τ 33 = τ⃗ 3n⃗ =

√
g

a

{
[λΘ+ µ(2n⃗∂3U⃗ + ∂3U⃗∂3U⃗ ](1 + ∂3U⃗)

+2µ[(n⃗∂zU⃗+ +
1

2
R⃗+∂3U⃗ + ∂zU⃗∂3U⃗)(n⃗∂z̄U⃗)

+(n⃗∂ z̄U⃗ +
1

2
R⃗+∂3U⃗ + ∂3U⃗∂zU⃗)n⃗∂zU⃗ ] } .

Then

Θ = R⃗+∂zU⃗ +
¯⃗
R+∂z̄U⃗ + 2∂zU⃗∂ z̄U⃗ + ∂3U3 +

1

2
(∂3U⃗)2,

∂zU⃗ =
1

2
[(R⃗+ ¯⃗

R+)∂zU⃗+ + (
¯⃗
RR⃗+)∂z̄ U⃗ ],

R⃗+ = R⃗1 + iR⃗2, R⃗+ = R⃗1 + iR⃗2,

R⃗+ = ϑ−1[(1−Hx3)r⃗
+ + x3Q¯⃗r+],

r⃗+ = r⃗1 + ir⃗2, r⃗+ = r⃗1 + ir⃗2,

R⃗+R⃗+ =
4x3

Λ

λ−Hx3

ϑ2
Q,

R⃗+ ¯⃗
R+ =

2

Λ

(1−Hx3)
2 + x2

3QQ̄

ϑ2
=

2

Λ

ϑ+ 2x2
3QQ̄

ϑ2
,
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R⃗+r⃗+ =
2

ϑ
Qx3,

¯⃗
R+r⃗+ =

2

ϑ
(1−Hx3),

r⃗+r⃗+ = 0, r⃗+ ¯⃗r+ =
2

Λ
, r⃗+ ¯⃗r+ = 2,

F+ = F1 + F2, U+ = U + iU2, U+ = U1 + iU2.

We have the formulas

r⃗+∂zU⃗ =
1

λ
∂zU+ −HU3,

r⃗+∂z̄U⃗ = ∂z̄U
+ −QU3,

n⃗∂z̄U⃗ = ∂z̄U3 +
1

2
(Q̄U+ +HŪ+).

The displacement vector U⃗ , representable in the form

U⃗ = Uαr̄α + U3n⃗ = Uαr⃗
α + U3n⃗ = U(e)l⃗ + U(s)s⃗+ U3n⃗ (U3 = U3)

can be rewritten as follows:

U⃗ =
1

2
(U+ ¯⃗r+ + Ū+r⃗+) + U3n⃗

or

U⃗ = Im

[(
U(l) + iU(s)

) dz
ds

r⃗+

]
+ U3n⃗

where
U+ = U⃗ r⃗, U+ = U⃗ r⃗+, U⃗(⃗l) = U⃗ l⃗, Us = U⃗ s⃗.

Here s⃗ and l⃗ are the unit tangent vector and tangential normal of the midsurface

S(x3 = 0). The expression for the unit tangent vector ˆ⃗s and the tangential normal
ˆ⃗
l of

the surface Ŝ(x3 = const) have the forms

ˆ⃗s =
dR⃗

dŝ
= [(1− xsks)s⃗+ xsτsl⃗]

ds

dŝ
,

ˆ⃗
l = ˆ⃗s× n⃗ = [(1− x3ks)⃗l − x3τss⃗]

ds

dŝ
,

and

dŝ =
√
1− 2x3ks + (k2

s + l2s)x
2
3ds,(

ˆ⃗
l × ˆ⃗s = n⃗

)
where dŝ and ds are linear elements of the surfaces Ŝ and S, τs is the geodesic version
of the surface S.

The formula
ˆ⃗
lR⃗α = (1− 2Hx3 +Kx2

3)(⃗lr⃗α)
ds

dŝ
.
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which is necessary in writing the reduced basic boundary-value problems in stresses, is
also valid.
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