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HIGHER ORDER DIFFERENCE EQUATIONS WITH PROPERTIES A AND B
Khachidze N.

Abstract. The following higher order difference equation
A u(k) + p(k)[u(o (k) sign(u(o(k))) = 0

is considered, where n > 2, 0 <A< 1,p: N - R,0: N — N, o(k) > k+ 1.
Necessary conditions are obtained for the above equation to have monotone solutions.
The obtained results are also new for the oscillation of solutions.
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1. Introduction

Consider the higher order difference equation
A" u(k) + p(k)[u(o(k))sign(u(o(k))) = 0, (1.1)

wheren >2 0<A<1l,p:N—R,0: N — N,ok)>k+1.
Here

AOu(k) = u(k), ADuk) =ulk+1) —u(k), ADuk) =AW o ACDy(k)
(i=2,...,n).

It will always be assumed that either the condition
p(k) >0 for ke N, (1.2)

or

p(k) <0 for ke N (1.3)

holds.

For each k € N denote Ny = {k,k+1,...}.

Definition 1.1. Let ky € N. A function u : N, — R is said to be a proper
solution of equation (1.1), if it satisfies (1.1) on Ny, and

sup{|u(k)| : k> s} >0 for any s> k.

Definition 1.2. Let ky € N. A proper solution u : Ny, — R of equation (1.1) is
said to be oscillatory if for any k € Ny, there are kq, ko € Ni, such that u(ky)u(ks) < 0.
Otherwise the solution is called nonoscillatory.

Definition 1.3. We say that equation (1.1) has Property A if any its proper
solutions either is oscillatory or satisfies

IADu(k)[ L0 for kt+oo (i=0,1,...,n—1), (1.4)
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when n is odd.
Definition 1.4. We say that equation (1.1) has Property B if any of its proper
solutions is oscillatory or satisfies either (1.4) or

IADu(k)|[ 1+ +o0 for kT +oo (i=0,1,...,n—1), (1.5)

when n is even, either is oscillatory or satisfies (1.5) when n is odd.

For a functional differential equation, similar problems were considered in [1-4] (see
also the references therein). Oscillatory properties for first and second order difference
equations are studied in [5-9].

In the present paper we give sufficient conditions for equation (1.1) to have prop-
erties A and B.

2. Necessary condition of the existence of monotone solutions

For any ko € N denote by Uy, the set of solutions u : Ny, — R of equation (1.1)
which satisfies the condition:

ADu(k) >0 for k>ky i=0,...,1—1,
(1! ADu(k) >0 for k>ky i=1,...,n

Theorem 2.1. Let 0 < A < 1, kg € N, condition (1.3) ((1.4)) be fulfilled, | €
{1,2,...,n—1}, l4+n be odd (I +n be even) and Uy, ; # .

Moreover, if
“+oo
DK e (RN (k)| = +oo (2.1)
k=1

then for any 6 € [0;\] and i € N we have

3RS (G (k)M (0 (k) [p(K)]| < oo,
where
a8 = (=1 EZJ" S ) (22)
pua(k) = n_l ,ZZ]” o (V) (s (0()) (5 =2,3,...).
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3. Sufficient conditions of nonexistence of monotone solutions

Theorem 3.1 Let conditions (1.2) ((1.3)) (2.1) be fulfilled, I € {1,...,n — 1}, let
[+ n be odd (I 4+ n be even) and for any § € [0,\] and i € N

3 K0 () 4D 1o (8)) )] = +00 5.1)

then for any ko € N, U, = &, where py; is defined by (2.2) and (2.3).
Theorem 3.2. Let conditions (1.2) ((1.3)) (2.1), for any v € (0;1)

k—+o00

+00
liminf k7 5" (o ()P p()] > 0
j=k

be fulfilled, 1 € {1,...,n— 1}, let I+ n be odd (I +n be even) and for any « € (1;+00)

lim inf @ > 0.
k—+o00 «

Moreover, if either
al>1,

or
+00
aA(1—2)
—ax

al < 1 and Z kn7171+71 E(O_(k)))\(l—l)‘p(k” = +00
k=1

is fulfilled. Then for any ko € N, Uy, = 9.

4. Difference equations with property A

Theorem 4.1. Let conditions (1.2) (2.1) be fulfilled, | € {1,...,n— 1}, let I +n
be odd and for any § € [0, A] and let k € N (3.1) be fulfilled. Moreover, if

n

> kT p(k) = +o0, (4.1)

k=1

when n is odd, then Equation (1.1) has Property A.
Theorem 4.2. Let conditions (1.2) and

A
lim inf (o(k)) >0
k—+o0 ]{7

be fulfilled. Then for the equation (1.1) to have Property A, it is sufficient that

+oo
Z k"2 Ap(k) = +oo.
k=1
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Theorem 4.3. Let conditions (1.2) and

(o (k)
k

lim sup < +0o0

k——+o0

be fulfilled. Then for equation (1.1) to have Property A, it is sufficient that conditions
(4.1) and

“+oo
D Mo (k)P p(k) = oo
k=1

be fulfilled.

5. Difference equations with property B

Theorem 5.1. Let conditions (1.3), (2.1) be fulfilled, | € {1,...,n — 1}, [ +n is
even and for any 0 € [0, A] and let k € N (3.1) be fulfilled. Moreover, if

“+00

S K (k)| = +oo, (5.1)

k=1

when n is even, then equation (1.1) has Property B.
Theorem 5.2. Let conditions (1.3) and

(o (k)™
k

lim inf >0

k—+o00

be fulfilled. Then for equation (1.1) to have Property B, it is sufficient that condition

+oo
> KT p(k)| = oo
k=1

be fulfilled.
Theorem 5.3. Let conditions (1.3) and
A
lim sup (o(k)) < 400
k—+o00 k

be fulfilled. Then for equation (1.1) to have Property B, it is sufficient that conditions
(5.1),

>R (k)X p(k)| = +o0

and
—+oco

Y (@R V()] = oo

k=1

be fulfilled.
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