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HIGHER ORDER DIFFERENCE EQUATIONS WITH PROPERTIES A AND B

Khachidze N.

Abstract. The following higher order difference equation

∆(n)u(k) + p(k)|u(σ(k))|λsign(u(σ(k))) = 0

is considered, where n ≥ 2, 0 < λ < 1, p : N → R, σ : N → N , σ(k) ≥ k + 1.

Necessary conditions are obtained for the above equation to have monotone solutions.

The obtained results are also new for the oscillation of solutions.
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1. Introduction

Consider the higher order difference equation

∆(n)u(k) + p(k)|u(σ(k))|λsign(u(σ(k))) = 0, (1.1)

where n ≥ 2, 0 < λ < 1, p : N → R, σ : N → N , σ(k) ≥ k + 1.
Here

∆(0)u(k) = u(k), ∆(1)u(k) = u(k + 1)− u(k), ∆(i)u(k) = ∆(1) ◦∆(i−1)u(k)

(i = 2, . . . , n).

It will always be assumed that either the condition

p(k) ≥ 0 for k ∈ N, (1.2)

or
p(k) ≤ 0 for k ∈ N (1.3)

holds.
For each k ∈ N denote Nk = {k, k + 1, . . . }.
Definition 1.1. Let k0 ∈ N . A function u : Nk0 → R is said to be a proper

solution of equation (1.1), if it satisfies (1.1) on Nk0 and

sup{|u(k)| : k ≥ s} > 0 for any s > k0.

Definition 1.2. Let k0 ∈ N . A proper solution u : Nk0 → R of equation (1.1) is
said to be oscillatory if for any k ∈ Nk0 there are k1, k2 ∈ Nk0 such that u(k1)u(k2) < 0.
Otherwise the solution is called nonoscillatory.

Definition 1.3. We say that equation (1.1) has Property A if any its proper
solutions either is oscillatory or satisfies

|∆(i)u(k)| ↓ 0 for k ↑ +∞ (i = 0, 1, . . . , n− 1), (1.4)
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when n is odd.
Definition 1.4. We say that equation (1.1) has Property B if any of its proper

solutions is oscillatory or satisfies either (1.4) or

|∆(i)u(k)| ↑ +∞ for k ↑ +∞ (i = 0, 1, . . . , n− 1), (1.5)

when n is even, either is oscillatory or satisfies (1.5) when n is odd.
For a functional differential equation, similar problems were considered in [1–4] (see

also the references therein). Oscillatory properties for first and second order difference
equations are studied in [5–9].

In the present paper we give sufficient conditions for equation (1.1) to have prop-
erties A and B.

2. Necessary condition of the existence of monotone solutions

For any k0 ∈ N denote by Uk0,l the set of solutions u : Nk0 → R of equation (1.1)
which satisfies the condition:

∆(i)u(k) > 0 for k ≥ k0 i = 0, . . . , l − 1,

(−1)i∆(i)u(k) ≥ 0 for k ≥ k0 i = l, . . . , n.

Theorem 2.1. Let 0 < λ < 1, k0 ∈ N , condition (1.3) ((1.4)) be fulfilled, l ∈
{1, 2, . . . , n− 1}, l + n be odd (l + n be even) and Uk0,l ̸= ∅.

Moreover, if
+∞∑
k=1

kn−l(σ(k))λ(l−1)|p(k)| = +∞ (2.1)

then for any δ ∈ [0;λ] and i ∈ N we have

+∞∑
k=1

kn−l−1+λ−δ(σ(k))λ(l−1)[ρl,i(σ(k))]
δ|p(k)| < +∞,

where

ρl,1(k) =

(
1− λ

l!(n− l)!

k−1∑
i=1

+∞∑
j=i

jn−l−1(σ(j))λ(l−1)|p(j)|
) 1

1−λ

, (2.2)

ρl,s(k) =
1− λ

l!(n− l)!

k∑
i=1

+∞∑
j=i

jn−l−1(σ(j))λ(l−1)|p(j)|(ρl,s−1(σ(j)))
λ (s = 2, 3, . . . ).

(2.3)
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3. Sufficient conditions of nonexistence of monotone solutions

Theorem 3.1 Let conditions (1.2) ((1.3)) (2.1) be fulfilled, l ∈ {1, . . . , n − 1}, let
l + n be odd (l + n be even) and for any δ ∈ [0, λ] and i ∈ N

+∞∑
k=i

kn−l−1+λ−δ(σ(k))λ(l−1)(ρl,i(σ(k)))
δ|p(k)| = +∞ (3.1)

then for any k0 ∈ N , Ul,k0 = ∅, where ρl,i is defined by (2.2) and (2.3).
Theorem 3.2. Let conditions (1.2) ((1.3)) (2.1), for any γ ∈ (0; 1)

lim inf
k→+∞

kγ

+∞∑
j=k

jn−l−1(σ(j))λ(l−1)|p(j)| > 0

be fulfilled, l ∈ {1, . . . , n− 1}, let l+ n be odd (l+ n be even) and for any α ∈ (1;+∞)

lim inf
k→+∞

σ(k)

kα
> 0.

Moreover, if either
αλ ≥ 1,

or

αλ < 1 and
+∞∑
k=1

kn−l−1+
αλ(1−λ)
1−αλ

−ε(σ(k))λ(l−1)|p(k)| = +∞

is fulfilled. Then for any k0 ∈ N , Ul,k0 = ∅.

4. Difference equations with property A

Theorem 4.1. Let conditions (1.2) (2.1) be fulfilled, l ∈ {1, . . . , n − 1}, let l + n
be odd and for any δ ∈ [0, λ] and let k ∈ N (3.1) be fulfilled. Moreover, if

n∑
k=1

kn−1p(k) = +∞, (4.1)

when n is odd, then Equation (1.1) has Property A.
Theorem 4.2. Let conditions (1.2) and

lim inf
k→+∞

(σ(k))λ

k
> 0

be fulfilled. Then for the equation (1.1) to have Property A, it is sufficient that

+∞∑
k=1

kn−2+λp(k) = +∞.
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Theorem 4.3. Let conditions (1.2) and

lim sup
k→+∞

(σ(k))λ

k
< +∞

be fulfilled. Then for equation (1.1) to have Property A, it is sufficient that conditions
(4.1) and

+∞∑
k=1

kλ(σ(k))λ(n−2)p(k) = +∞

be fulfilled.

5. Difference equations with property B

Theorem 5.1. Let conditions (1.3), (2.1) be fulfilled, l ∈ {1, . . . , n − 1}, l + n is
even and for any δ ∈ [0, λ] and let k ∈ N (3.1) be fulfilled. Moreover, if

+∞∑
k=1

kn−1|p(k)| = +∞, (5.1)

when n is even, then equation (1.1) has Property B.
Theorem 5.2. Let conditions (1.3) and

lim inf
k→+∞

(σ(k))λ

k
> 0

be fulfilled. Then for equation (1.1) to have Property B, it is sufficient that condition

+∞∑
k=1

kn−2+λ|p(k)| = +∞

be fulfilled.
Theorem 5.3. Let conditions (1.3) and

lim sup
k→+∞

(σ(k))λ

k
< +∞

be fulfilled. Then for equation (1.1) to have Property B, it is sufficient that conditions
(5.1),

+∞∑
k=1

kλ+1(σ(k))λ(n−3)|p(k)| = +∞

and
+∞∑
k=1

(σ(k))λ(n−1)|p(k)| = +∞

be fulfilled.
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