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Abstract. A simple algorithm for construction of the approximate solution of some classical

and nonlocal boundary value problems of the mathematical physics is considered. The effi-

ciency of the offered algorithm for construction of the approximate solutions of problems is

shown on the examples of two-dimensional classical and nonlocal boundary value problems

of the theory of elasticity and for two-dimensional equations of Laplace and Helmholtz.
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1. Introduction

In this work a simple algorithm for construction of the approximate solution of some
boundary value problems of the mathematical physics is considered. The mentioned
algorithm has been offered in [1]. We may call a considered method a semi-analytical
method. From the approximate methods known in the literature it is the closest to a
method of fundamental solutions [2-4] and a boundary elements method [5-9].

In the work the main relations of the offered method for the problems of the two-
dimensional equations of Laplace and Helmholtz and for problems of the plane theory of
thermoelasticity are obtained. By means of this method the approximate solutions for
several classical boundary value problems and nonlocal problems of Bitsadze-Samarskii
type [10-21] are constructed and exact solutions of these problems are known in ad-
vance. The relevant exact and approximate solutions are compared with each other
and appropriate conclusions are drawn.

2. Problems for the Laplaces two dimensional equation

Let Oxy be a rectangular cartesian coordinate system on the plane. We consider
the Laplace equation

∆u = 0, (1)

where ∆(·) = (·),xx + (·),yy is a two-dimensional laplacian, (·),x ≡ ∂(·)
∂x

, (·),y ≡ ∂(·)
∂y

;

u(x, y) is a scalar function.

First we consider the simply connected domain Ω with a sufficiently smooth bound-
ary L . The domain Ω covers the origin of coordinates. On a contour L the 2N + 1
points with coordinates of (x1, y1), (x2, y2), ..., (x2N+1, y2N+1) are more or less evenly
distributed (Fig. 1).
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The approximate solution is sought in the form of

ū = a0 +
N∑

n=1

rn(x, y)[an cos(nθ(x, y)) + bn sin(nθ(x, y))], (2)

where a0, a1, · · · , an, b1, · · · , bn are sought-for real coefficients; r(x, y) =
√
x2 + y2,

θ(x, y) =



arctan
y

x
, x > 0,

arctan
y

x
+ π, x < 0, y ≥ 0,

arctan
y

x
− π, x < 0, y < 0,

π

2
, x = 0, y > 0,

−π
2
, x = 0, y < 0.

The partial derivatives of ū(x, y) are expressed by the formulas

ū,x =
N∑

n=1

nrn−1(x, y)[an cos((n− 1)θ(x, y)) + bn sin((n− 1)θ(x, y))],

ū,y =
N∑

n=1

nrn−1(x, y)[−an sin((n− 1)θ(x, y)) + bn cos((n− 1)θ(x, y))].

(3)

Fig. 1. The simply connected domain Ω

The algorithm of construction of the approximate solution is stated on the example
of the classical mixed boundary value problem. The contour L is divided into two
contours L1 and L2 so that by L1

∩
L2 = ∅ and L1

∩
L2 = L (Fig. 1). Let us

assume that the contour L1 includes points of (x1, y1), (x2, y2), · · · , (xN1 , yN1) and the
contour L2 includes points of (xN1+1, yN1+1), (xN1+2, yN1+2), · · · , (x2N+1, y2N+1) . On
the contour L1 the value of the sought-for function is set, and on the contour L2 - of
the value of its normal derivative{

u|L1 = f1(x, y), (x, y) ∈ L1

u,n|L2 = f2(x, y), (x, y) ∈ L2,
(4)
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where f1(x, y) and f2(x, y) are the functions defined on the boundary; (·),n derivative
in the direction n⃗ = (cosα, sinα), i. e.

u,n = u,x cosα+ u,y sinα. (5)

External unit normal in a point (xj, yj) on the boundary is designated through
(cosαj, sinαj).

When j = 1, 2, · · · , N1 in the formula (2) x and y are replaced through xj and
yj respectively. The expressions obtained f1(xj, yj) are equated to the corresponding
values of the boundary conditions (4). Similarly, when j = N1 +1, N1 +2, · · · , 2N +1
in the formula (3) x and y are replaced through xj and yj. The expressions received are
substituted in (4), where instead of α value αj is substituted. The resulting expressions
are equated to the corresponding values f2(xj, yj) of the boundary conditions (4).

Thus, we obtain the system of the linear algebraic 2N + 1 equations with 2N + 1
unknown a0, a1, ..., aN , b1, ..., bN

a0 +
N∑

n=1

(A1njan + A2njbn) = f1(xj, yj), j = 1, 2, · · · , N1,

N∑
n=1

(B1njan +B2njbn) = f2(xj, yj), j = N1 + 1, N1 + 2, · · · , 2N + 1,

(6)

where
A1nj = rn(xj, yj) cos(nθ(xj, yj)),

A2nj = rn(xj, yj) sin(nθ(xj, yj)),

B1nj = nrn−1(xj, yj)[cos((n− 1)θ(xj, yj)) cosαj + sin((n− 1)θ(xj, yj)) sinαj],

B2nj = nrn−1(xj, yj)[− sin((n− 1)θ(xj, yj)) cosαj + cos((n− 1)θ(xj, yj)) sinαj].

After solving the system (6), its solution (a0, a1, ..., aN , b1, ..., bN) is substituted in
the formula (2) and thus we’ve got the approximate solution of a boundary value
problem (1), (4).

Example 1. As an example we consider a classical problem of Dirichlet in elliptic
domain V = {(x, y)| x2 + 4y2 < 1} . The boundary of domain V is the ellipse of S,
which is set parametrically x = cos t, y = 0.5 sin t, 0 ≤ t < 2π. Thus, the following
problem is considered

∆u = 0 in V,

u|S = 0.5(x2 + y2)|(x,y)∈S.
The exact solution of this problem is the following function

u = 0.2 + 0.3(x2 − y2).

On the boundary S the points
(
cos

π

36
(j− 1), 0.5 sin

π

36
(j− 1)

)
, j = 1, 2, ..., 71 are

marked (Fig. 2). The approximate solution is sought in the form (2), where N = 35.
Meeting the boundary conditions in the marked points, we’ve got the system of the
algebraic 71 equations with 71 unknown.
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Fig. 2. The domain V with the points marked on the boundary

After solving this system, the resulting solution is substituted in (2) ( N = 35) and
we’ve got the approximate solution.

The appropriate program is made in the Maple12. Numerical results are specified
in Table 1.

Tab. 1. Numerical results for the problem 1

(x, y) ū(x, y) u(x, y) |ū(x, y)− u(x, y)|
(0.01, 0) 0.2000300000 0.20003 0
(0.1, 0) 0.2030000000 0.20300 0
(0.5, 0) 0.2750000000 0.27500 0
(0.9, 0) 0.4429999995 0.44300 5.0 · 10−10

(0.2,−0.2) 0.2000000000 0.20000 0
(0, 0.3) 0.1730000000 0.17300 0
(0.8, 0.1) 0.3890000001 0.38900 10−10

As Table 1 shows the constructed approximate solution may be called the exact
solution of the problem of Dirichlet.

The approximate solutions for multi-connected domains are constructed analo-
gously. For simplicity the doubly connected domain Ω, bounded by the simple closed
contours L1 and L2 is considered from which the last one embraces the latter and the
previous embraces the origin of coordinates. On these contours the points 2(2N + 1)
with the coordinates (x1, y1), (x2, y2), ..., (x2(2N+1), y2(2N+1)) are more or less evenly dis-
tributed (Fig. 3).

Fig. 3. The doubly connected domain Ω
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The approximate solution is sought in the following form

ū = a ln r(x, y) + a0 +
N∑

n=1

r−n(x, y)[an cos(nθ(x, y)) + bn sin(nθ(x, y))]

+rn(x, y)[cn cos(nθ(x, y) + dn sin(nθ(x, y))].

(7)

Partial derivatives of ū(x, y) function are expressed by means of the formulas

ū,x =
ax

r2(x, y)
+

N∑
n=1

−nr−n−1(x, y)[an cos((n+ 1)θ(x, y))

+bn sin((n+ 1)θ(x, y))] + nrn−1(x, y)[cn cos((n− 1)θ(x, y))

+dn sin((n− 1)θ(x, y))],

(8)

ū,y =
ay

r2(x, y)
+

N∑
n=1

−nr−n−1(x, y)[an sin((n+ 1)θ(x, y))

−bn cos((n+ 1)θ(x, y))] + nrn−1(x, y)[−cn sin((n− 1)θ(x, y))

+dn cos((n− 1)θ(x, y))],

(9)

Using the formulas (7)-( 9), (5) of the simply connected domain considered above,
the boundary conditions are satisfied point-wise in the points selected on the boundary.
As a result the we’ve got a system of the linear algebraic 4N +2 equations with 4N +2
unknowns a, a0, a1, ..., aN , b1, ..., bN , c1, ..., cN , d1, ..., dN .

The considered way can be applied to construct the approximate solution of rather
a wide class of tasks for harmonic functions. The example of construction of the ap-
proximate solution of nonlocal problem of Bitsadze-Samarskii for the doubly connected
domain bounded by the rectangular contours is given below.

Example 2. Let the domain V represent the doubly connected domain V =
V1\V 2, where V1 = {−2 < x < 3,−2 < y < 2}, V2 = {−1 < x < 1,−1 < y < 1} (Fig.
4). We consider below the nonlocal problem of Bitsadze-Samarskii

∆u = 0 in V,

u(−2, y) = − 2

4 + y2
− y2 + 20, −2 ≤ y ≤ 2,

u(x,±2) =
x

x2 + 4
+ x2 − 5x+ 2, −2 < x ≤ 3,

u(3, y)− u(2, y) =
3

9 + y2
− 2

4 + y2
, −2 < y < 2,

u,x(−1, y) =
y2 − 1

(y2 + 1)2
− 7, −1 ≤ y < 1,

u,y(x,±1) = ∓
( 2x

(x2 + 1)2
+ 2

)
, −1 ≤ x < 1,
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u,x(1, y) =
y2 − 1

(y2 + 1)2
− 3, −1 < y ≤ 1.

The exact solution of this problem is as follows

u(x, y) =
x

x2 + y2
+ x2 − 5x− y2 + 6.

Fig. 4. Doubly connected domain V , in which nonlocal problem is solved

On an external contour beginning from the point (3, 0), with a step 0.5 points 36 are
marked. Analogously, on an internal contour beginning from a point (1, 0), with the
same frequency 16 more points are marked. On an internal contour two more points
with coordinates (0.75,−1.0) and (−0.75, 1.0) are marked. In fig. 4 also 7 points
are marked on the segment inside the body where nonlocal conditions are set. The
approximate solution sought in the form (7), where N = 13. Boundary and nonlocal
conditions are satisfied in the marked points.

The solution of the nonlocal problem is tabulated to solution of the problem of
system of the linear algebraic 54 equations with 54 unknown. After solving this system,
the resulting solution is substituted in (7) (N = 13) and we’ve got the approximate
solution.

The appropriate program is made in the Maple 12. Numerical results are presented
in Table 2.

Tab. 2. Numerical results for a problem 2

(x, y) ū(x, y) u(x, y) |ū(x, y)− u(x, y)|
(2.0, 0) 0.5000066859 0.5 6.66859 · 10−6

(1.6, 1.8) −2.404136519 −2.404137931 1.412 · 10−6

(0.4, 1.74) 1.257888466 1.257886259 2.203 · 10−6

(−1.43,−2.25) 9.931201879 9.931201249 6.3 · 10−7

(0.7,−1.23) 1.826596858 1.826593235 3.623 · 10−6

(−1.5, 1.5) 13.16666710 13.16666667 4.3 · 10−7

(3.0,−2.0) −3.769230771 −3.769230769 2.0 · 10−9

3. Problems of the plane theory of thermoelasticity

Let consider the plane deformation parallel to the plane Oxy for the homogeneous
transversely isotropic thermoelastic body.
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If the plane of an isotropie is parallel to the Oxy plane then the homogenous system
of the equations of thermoelastic equilibrium in displacements has the form [22, 23, 25]

µ∆u+
1

2

E1E2

(1− ν1)E2 − 2ν22E1

(u,x + v,y),x − βT,x = 0,

µ∆v +
1

2

E1E2

(1− ν1)E2 − 2ν22E1

(u,x + v,y),y − βT,y = 0,

(10)

where µ are shear modulus µ =
E1

2(1 + ν1)
; ν1, ν2 and E1, E2 Poisson’s coefficients and

Young’s modulus in the Oxy and in the direction of perpendicular thereto, respectively.
u and v are components of the displacement vector along axes x and y, respectively;

β constant depending on the thermal properties of material β =
E1E2(α1 + ν2α2)

(1− ν1)E2 − 2ν22E1

;

α1, α2 are the coefficients of the linear thermal expansion; T is the temperature changes
in the elastic body satisfying the Laplace equation

∆T = 0. (11)

Duhamel-Neumann relations has the form

σxx =
2µ

(1− ν1)E2 − 2ν22E1

[(E2 − ν22E1)u,x + (ν1E2 + ν22E1)v,y]− βT,

σyy =
2µ

(1− ν1)E2 − 2ν22E1

[(ν1E2 + ν22E1)u,x + (E2 − ν22E1)v,y]− βT,

σxy = σyx = µ(u,y + v,x),

σzz =
ν2E1E2

(1− ν1)E2 − 2ν22E1

(u,x + v,y)− βT,

(12)

where σxx, σyy, σxy, σzz are components of the stresses tensor. Other components of a
tensor of stresses in case of plane deformation equal to zero.

Next, we construct the general representation of the system of equations (10) by
means of harmonic functions (Kolosov-Muskhelishvilis formula).

The first equation of the system (10) is differentiated by x, the second - by y and
are added up. Given the fact, that we’ve got the T harmonic function

∆[(c+ µ)(u,x + v,y)] = 0, (13)

where denotation is entered

c :=
1

2

E1E2

(1− ν1)E2 − 2ν22E1

.

If the second equation of the system (10) is differentiated by x , and the first equation
is differentiated by y and to consider their difference, we’ll obtain

∆[µ(v,x − u,y)] = 0. (14)
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The notation is introduced

θ := (c+ µ)(u,x + v,y), ω := µ(v,x − u,y). (15)

Thus, according to (13) and (14), θ and ω are harmonic functions

∆θ = 0, ∆ω = 0. (16)

According to notation (15) 
u,x + v,y =

θ

c+ µ

v,x − u,y =
ω

µ

(17)

From (17) there follows

∆u =
θ,x
c+ µ

− ω,y

µ
, ∆v =

θ,y
c+ µ

+
ω,x

µ
. (18)

Formulas (18) are substituted in the system (10) and the notation introduced in this
section are accounted {

(θ − βT ),x − ω,y = 0,
(θ − βT ),y + ω,x = 0.

(19)

As θ and ω are harmonic functions, from (19) we have

θ = aφ+ βT = 0.5[(aφ∗ + βT ∗),x + (aφ̃+ βT̃ ),y], (20)

ω = 0.5a(−φ∗
,y + φ̃,x), (21)

where a is any real constant other than zero; φ∗, φ̃ and T ∗, T̃ are the mutually conjugate
harmonic functions

φ∗
,x = φ̃,y = φ, φ∗

,y = −φ̃,x,

T ∗
,x = T̃,y = T, T ∗

,y = −T̃,x,

Relations (20) and (21) are substituted in system (17)
(
u− a

2(c+ µ)
φ∗ − β

β(c+ µ)
T ∗

)
,x

−
(
v − a

2(c+ µ)
φ̃− β

2(c+ µ)
T̃

)
,y

= 0,

v,x − u,y =
a

2µ
(−φ∗

,y + ϕ̃,x) = 0.

(22)
The first equation of system (22) is identically satisfied, if

u = Φ,y +
a

2(c+ µ)
φ∗ +

β

2(c+ µ)
T ∗, v = −Φ,x +

a

2(c+ µ)
φ̃+

β

2(c+ µ)
T̃ . (23)
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The equalities (23) are substituted in the second equation (22) as a result of which
we’ve got the equation relating to the function Φ

∆Φ =
ca

2µ(c+ µ)
(φ∗

,y − φ̃,x) +
β

2(c+ µ)
(−T ∗

,y + T̃,x). (24)

The general solution of equation (24) is presented in the form

Φ =
ca

4µ(c+ µ)
(yφ∗ − xφ̃) + bψ +

β

4(c+ µ)
(−yT ∗ + xT̃ ). (25)

where ψ is an arbitrary harmonic function, b is any real constant other than zero.
Constants a and b may be represented as follows

a =
c+ µ

c
, b =

1

2µ
,

and the formula (25) is substituted in the ratio (23)

2µu =
c+ 2µ

2c
φ∗ + 0.5(yφ∗

,y − xφ̃,y) + ψ,y +
µβ

2(c+ µ)
(T ∗ − yT ∗

,y + xT̃,y), (26)

2µv =
c+ 2µ

2c
φ̃+ 0.5(xφ̃,x − yφ∗

,x)− ψ,x +
µβ

2(c+ µ)
(T̃ − xT̃,x + yT ∗

,x). (27)

By substituting (26) and (27) in the formulas (12) we’ve obtained the following expres-
sions for stress tensor components

σxx = φ+ 0.5(yφ∗
,xy − xφ̃,xy) + ψ,xy −

βµ

2(c+ µ)
(2T + yT ∗

,xy − xT̃,xy),

σyy = φ− 0.5(yφ∗
,xy − xφ̃,xy)− ψ,xy −

βµ

2(c+ µ)
(2T − yT ∗

,xy + xT̃,xy),

σxy = 0.5(yφ∗
,yy + xφ̃,xx) + ψ,yy −

βµ

2(c+ µ)
(yT ∗

,yy + xT̃,xx),

σzz = 2ν2φ− (1− 2ν2)c+ µ

c+ µ
βT.

(28)

For simplification of representations (26) - (28) the following notation is introduced

ϕ = φ− µβ

c+ µ
T, ϕ∗ = φ∗ − µβ

c+ µ
T ∗, ϕ̃ = φ̃− µβ

c+ µ
T̃ . (29)

ϕ is a harmonic function, and ϕ∗ and ϕ̃ are the mutually conjugate harmonic functions

ϕ∗
,x = ϕ̃,y = ϕ, ϕ∗

,y = −ϕ̃,x.

From (29) functions φ, φ∗, φ̃ are defined and are substituted in the formulas (26) - (28).
As a result we obtain displacement representations

2µu =
c+ 2µ

2c
ϕ∗ + 0.5(yϕ∗

,y − xϕ̃,y) + ψ,y +
βµ

c
T ∗, (30)
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2µv =
c+ 2µ

2c
ϕ̃+ 0.5(xϕ̃,x − yϕ∗

,x)− ψ,x +
βµ

c
T̃ . (31)

The following representations are fair for stresses

σxx = ϕ+ 0.5(yϕ,y − xϕ,x) + ψ,xy,

σyy = ϕ− 0.5(yϕ,y − xφ,x)− ψ,xy,

σxy = −0.5(yϕ,x + xϕ,x) + ψ,yy,

σzz = 2ν2ϕ− (1− 2ν2)βT.

(32)

The analogs of formulas of Kolosov-Muskhelishvili [24] of (30)-(32) plane theories of
thermoelasticity for transversely isotropic bodies may be used both for construction
of exact solutions of boundary value problems and for construction of approximate
solutions of a wide class of problems.

In case of finite simply connected domain the harmonic functions ϕ∗, ϕ̃, ϕ are rep-
resented by the following finite series

ϕ∗ = a0 +
N∑

n=1

rn(x, y)[an cos(nθ(x, y)) + bn sin(nθ(x, y))],

ϕ̃ = b0 +
N∑

n=1

rn(x, y)[an sin(nθ(x, y))− bn cos(nθ(x, y))],

ϕ =
N∑

n=1

nrn−1(x, y)[an cos((n− 1)θ(x, y)) + bn sin((n− 1)θ(x, y))].

(33)

As the formulas (30), (31) show the constants a0 , b0 correspond to rigid displacement
of a body, therefore they are equal to zero a0 = b0 = 0. The harmonic function ψ is
represented as

ψ =
N∑

n=1

rn(x, y)[cn cos(nθ(x, y)) + dn sin(nθ(x, y))]. (34)

Analogously, the harmonic functions T ∗, T̃ , T are also represented as

T ∗ = t0 +

NT∑
n=1

rn(x, y)[tn cos(nθ(x, y)) + τn sin(nθ(x, y))],

T̃ = τ0 +

NT∑
n=1

rn(x, y)[tn sin(nθ(x, y))− τn cos(nθ(x, y))],

T =

NT∑
n=1

nrn−1(x, y)[tn cos((n− 1)θ(x, y)) + τn sin((n− 1)θ(x, y))].

(35)

For construction of the approximate solution of problems, the representations (33)-
(35) are substituted in the formulas (30)-(32), if necessary formulas of transformation
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of components of a vector and a tensor of the second rank are used and the conditions
set are satisfied point-wise. The problem is tabulated to the solution of square system
of the linear algebraic equations for required expansion coefficients (33)-(35).

The example of a nonlocal problem of Bitsadze-Samarskii in case of the plane theory
of elasticity for rectangular domain is given below.

Example 3. We consider the domain V = {−2.5 < x < 2.5,−2 < y < 2}
(Fig. 5). In the domain V it is required to find such solution of system (10) (where
c = 3, µ = 1, T = 0 is accepted), which satisfies the following conditions (see [1])

u = −5.5y2 + 14.375, x = −2.5,−2 ≤ y ≤ 2,

v = 7.0y, x = −2.5,−2 ≤ y ≤ 2,

σyy|y=2 = −2.0x− 1, −2.5 < x < 2.5,

σyx|y=2 − σyx|y=1 = −14.0, −2.5 < x < 2.5,

u = −5.5y2 + 16.875, x = 2.5,−2 ≤ y ≤ 2,

v = −8.0y, x = 2.5,−2 ≤ y ≤ 2,

u = 2.5x2 + 0.5x− 22.0, y = −2,−2.5 < x < 2.5,

v = 6.0x+ 1.0, y = −2,−2.5 < x < 2.5.

The exact solution of this problem is as follows

u = 2.5x2 − 5.5y2 + 0.5x,

v = −0.3xy − 0.5y.

The boundary counter of the considered domain is divided by points into 72 equal
segments. 19 points are also distributed evenly on a segment inside the domain where
nonlocal conditions are set. The approximate solutions are sought as follows

ū = 0.5
36∑
n=1

rn−1
{[5

6
r cos(nθ)− n

2
y sin((n− 1)θ)− n

2
x cos((n− 1)θ)

]
an

+
[5
6
r sin(nθ) +

n

2
y cos((n− 1)θ)− n

2
x sin((n− 1)θ)

]
bn

−n sin((n− 1)θ)cn + n cos((n− 1)θ)dn

}
,

v̄ = 0.5
36∑
n=1

rn−1
{[5

6
r sin(nθ) +

n

2
y sin((n− 1)θ)− n

2
x cos((n− 1)θ)

]
an

−
[5
6
r cos(nθ) +

n

2
y cos((n− 1)θ) +

n

2
x sin((n− 1)θ)

]
bn

−n cos((n− 1)θ)cn − n sin((n− 1)θ)dn

}
.
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The components of the stress tensor σyy and σyx appearing in the reference condition
are presented in the form of the following finite rows

σyy =
36∑
n=1

nrn−2
{[
r cos((n− 1)θ) +

n− 1

2
y sin((n− 2)θ) +

n− 1

2
x cos((n− 2)θ)

]
an

+
[
r sin((n− 1)θ)− n− 1

2
y cos((n− 2)θ) +

n− 1

2
x sin((n− 2)θ)

]
bn

+(n− 1) sin((n− 2)θ)cn − (n− 1) cos((n− 2)θ)dn

}
,

σyx =
36∑
n=1

n(n− 1)

2
rn−2

{[
− y cos((n− 2)θ) + x sin((n− 2)θ)

]
an

−
[
y sin((n− 2)θ) + x cos((n− 2)θ)

]
bn

−2 cos((n− 2)θ)cn − 2 sin((n− 2)θ)dn

}
.

In the last four formulas the coordinates of points marked on the boundary and
inside the domain are substituted and the corresponding boundary and nonlocal con-
ditions are satisfied on them. As a result we obtained the system consisting of the 144-
linear algebraic equations and containing 144 unknowns (a1, ..., a36, b1, ..., b36, c1, ..., c36,
d1, ..., d36). After solving this system by means of the formulas given above one can
easily find components of a vector of displacement and a tensor of stresses.

Fig. 5. The domain V in which the nonlocal problem of the plane theory of elasticity is solved

The appropriate program is made in the Maple 12. Numerical results are pre-
sented in Table 3, where ū and v̄ denote the approximate values of components of the
displacement vector.
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Tab. 3. Numerical results for a problem 3

(x, y) ū(x, y) u(x, y) |ū(x, y)− u(x, y)|
(0, 0) 4.166195286 · 10−8 0 4.166195286 · 10−9

(−1.0, 1.0) −3.499999843 −3.500 1.57 · 10−7

(1.5,−1.5) −5.999999978 −6.000 2.2 · 10−8

(1.2,−0.8) 0.6800000324 0.680 3.24 · 10−8

(−1.7, 1.5) −5.999999651 -6.000 3.49 · 10−7

(2.2,−1.4) 2.420000034 2.420 3.4 · 10−8

(1.25, 1.75) −12.31250013 −12.31250 1.3 · 10−7

(x, y) v̄(x, y) v(x, y) |v̄(x, y)− v(x, y)|
(0, 0) −1.190721638 · 10−7 0 1.190721638 · 10−7

(−1.0, 1.0) 2.499999817 2.500 1.83 · 10−7

(1.5,−1.5) 7.499999968 7.500 3.2 · 10−8

(1.2,−0.8) 3.279999938 3.280 6.2 · 10−8

(−1.7, 1.5) 6.899999694 6.900 3.06 · 10−7

(2.2,−1.4) 9.939999959 9.940 4.1 · 10−8

(1.25, 1.75) −7.437500134 −7.43750 1.34 · 10−7

As numerical results show the considered method gives the good approximate solution
for nonlocal mixed boundary value problem of the plane theory of elasticity.

4. Problems for the Helmholtzs two dimensional equation

Let on the plane Oxy there be a domain Ω (shown in Fig. 3). In this domain the
following equation of Helmholtz is considered

∆ω − ζ2ω = 0 in Ω, (36)

where ζ is any real constant other than zero.
The approximate solution is sought as follows

ω̄ = a0I0(ζr(x, y)) + b0K0(ζr(x, y))

+
N∑

n=1

{In(ζr(x, y))[an cos(nθ(x, y)) + bn sin(nθ(x, y))]

+Kn(ζr(x, y))[cn cos(nθ(x, y)) + dn sin(nθ(x, y))]},

(37)

where In(ζr) and Kn(ζr) are modified Bessel functions of n order according to [26].
Partial derivatives of functions ω̄(x, y) are expressed by means of the formulas

ω̄,x =
ζx

r
(a0I1(ζr)− b0K1(ζr)

+
ζx

2r

N∑
n=1

{(In−1(ζr) + In+1(ζr))[an cos((n− 1)θ(x, y)) + bn sin((n− 1)θ(x, y))]

−(Kn−1(ζr) +Kn+1(ζr))[cn cos((n− 1)θ(x, y)) + dn sin((n− 1)θ(x, y))]},

(38)
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ω̄,y =
ζy

r
(a0I1(ζr)− b0K1(ζr))

+
ζy

2r

N∑
n=1

{(In−1(ζr) + In+1(ζr))[−an sin((n− 1)θ(x, y))

+bn cos((n− 1)θ(x, y))] + (Kn−1(ζr) +Kn+1(ζr))[cn sin((n− 1)θ(x, y))

−dn cos((n− 1)θ(x, y))]}.

(39)

By means of the formulas (37)-(39) one can construct the approximate solutions of
various boundary value problems or boundary value contact problems for Helmholtz’s
equation (36).

An example of nonlocal problem of Bitsadze-Samarskii for the Helmholtz’s equation
is given below.

Example 4. The Helmholtz equation in a rectangle V = {−3 < x < 3, −2 < y <
2}(Fig. 6) is given as an example to find such a function ω satisfying the following
conditions

∆ω − π2

12
ω = 0 in V, (40)

ω(−3, y)−
√
2ω(−1.5, y) + ω(0, y) = 0, −2 < y < 2,

ω(x,±2) = e±
2π
3 sin

πx

6
, −3 ≤ x ≤ 3,

ω(3, y) = e
πy
3 , −2 < y < 2.

It is easy to verify that the exact solution of the problem set is as follows

ω(x, y) = e
πy
3 sin

πx

6
.

The approximate solution of the considered nonlocal problem is sought in the form of
the sum

ω̄ = a0I0

(√3π

6
r(x, y)

)
+

39∑
n=1

{
In

(√3π

6
r(x, y)

)
[an cos(nθ(x, y))

+bn sin(nθ(x, y))]
}
.

(41)

Beginning from a point (-3, 0) on the boundary of the considered rectangle with
a step 0.25, 79 points are evenly distributed. 15 points are evenly distributed on
each piece inside the domain where nonlocal conditions are set. After satisfying
the given boundary conditions and nonlocal conditions we’ve obtained the system
of the linear algebraic 79 equations with 79 unknowns. The solution of this system
(a0, a1, ..., a39, b1, ..., b39) is substituted in formula (41) representing the approximate
solution of the stated problem. The constructed approximate solution satisfies the
Helmholtz equation in the domain V and satisfies the boundary conditions and nonlo-
cal conditions in the respective points marked in advance.
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Fig. 6. Domain V , in which the nonlocal problem for Helmholtz’s equation is considered

The appropriate program is made in the Maple 12. Numerical results are presented
in the table 4.

Tab. 4. Numerical results for the problem 4.

(x, y) ω̄(x, y) ω(x, y) |ω̄(x, y)− ω(x, y)|
(−3.0,−1.5) −0.2078795840 −0.2078795765 7.5 · 10−9

(−1.75, 1.75) −4.958529035 −4.958529038 3.0 · 10−9

(0,−1.5) −3.564486401 · 10−10 0 3.564486401 · 10−10

(0.5,−2.0) 0.03187219544 0.03187219654 1.1 · 10−9

(1.0, 1.5) 2.405238691 2.405238689 2.0 · 10−9

(1.5, 1.25) 2.618033198 2.618032200 2.0 · 10−9

(3.0, 1.5) 4.810477384 4.810477377 7.0 · 10−9

As the table shows the constructed approximate solution of the nonlocal problem is a
good approximation to the exact solution of this problem.

5. Conclusion. In the work we propose the simple method of the approximate
solution of boundary value problems of mathematical physics. The approximate so-
lutions of such two-dimensional classical and nonlocal boundary value problems for
Laplace’s and Helmholtz’s equations and the theory of elasticity, the exact solutions of
which are known in advance, are constructed by the proposed method.

We believe that by means of the considered algorithm it is possible to receive quite
good approximate solutions of some boundary value problems of mathematical physics.
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