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ONE BOUNDARY VALUE PROBLEM FOR THE PLATES

Gulua B.

Abstract. In this work we consider equations of equilibrium of the isotropic elastic shell.

By means of Vekua’s method, the system of differential equations for thin and shallow shells

is obtained, when on upper and lower face surfaces displacements are assumed to be known.

The general solution for approximations N = 1 is constructed. The concrete problem is

solved.
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1. Introduction

The refined theory of shells is constructed by reducing the three-dimensional prob-
lems of the theory of elasticity to the two-dimensional problems. I. Vekua had obtained
the equations of shallow shells [1],[2]. It means that the interior geometry of the shell
does not vary in thickness. This method for non-shallow shells in case of geometrical
and physical nonlinear theory was generalized by T. Meunargia [3].

By means of Vekua’s method, the system of differential equations for thin and
shallow shells was obtained, when on upper and lower face surfaces displacements are
assumed to be known [4].

The systems of equilibrium equations and stress-strain relations (Hooke’s law) of
the tow-dimensional shallow shells may be written in the following form [4]:
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Here λ and µ are Lame’s constants, ∇α are covariant derivatives on the midsurface, aαβ

and bαβ are the contravariant components of the metric tensor and curvature tensor of
the midsurface, H is middle curvature of the midsurface and(
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where σij are contravariant components of the stress vectors, ui are contravariant com-
ponents of the displacement vector, Φi are contravariant components of the volume

force, Pm

(
x3

h

)
are Legendre polynomials, x1, x2 are the Gaussian parameters of the

midsurfaces, x3 = x3 is the thickness coordinate and h is the semi-thickness. So, we
have the infinite system.

An infinite system of equations (1) has the advantage that it contains two indepen-
dent variables - Gaussian coordinates x1, x2 of the midsurface. But the decrease in
the number of independent variables is achieved by increasing the number of equations
to infinity, which, naturally, has an obvious practical inconvenience. Therefore it is
necessary to make the next step for a further simplification of the problem.

2. N = 1 approximation for plates

we consider N = 1 approximation for plates. In other words, in the previous
equations it is assumed that

(m)
σ ij = 0,

(m)
u i = 0, if m > 1.

As a result we obtain a finite system of equilibrium equations
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Substituting these expressions (5) and (6) into equation (3) and (4), we obtain the
system of second-order partial differential equations:
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Introducing the well-known differential operators
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System (7) and (8) can be written in the complex form:
a) for the tension-pressure of plates
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b) for the bending of plates
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where ∆ = 4
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The complex representation of the general solutions of the homogenous systems (9)
and (10) are written in the following form [2, 5]:
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where f(z), g(z), φ(z) and ψ(z) are any analytic functions of z, ω(z, z̄) and χ(z, z̄) are
the general solutions of the following Helmholtz’s equations, respectively:
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3. The solution of the boundary problem for the circle

Let us solve the problem when the midsurface of the body is the circle with the
radius R.

The boundary problem (in stresses) takes the form [3]:
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Using eqs. (12) and (13) the boundary conditions are written as
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Inside the domain the analytic functions f(z), g(z), φ(z) and ψ(z) will have the
following form:
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In the boundary conditions (15) we substitute the corresponding expressions (17),
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of equations
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The solutions of the system (21) have the following forms:
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For coefficients cn, dn and βn we have:
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where
I ′n(νR) = In+2(νR)− In(νR), I ′′n(νR) = In+1(νR) + In−1(νR).

It is easy to prove that the absolute and uniform convergence of the series obtained
in the circle (including the contours) when the functions set on the boundaries have
sufficient smoothness.
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