Seminar of I. Vekua Institute
 of Applied Mathematics
 REPORTS, Vol. 41, 2015

INVERSE PROBLEM ABOUT TRANSITION IN A FIXED POINT FOR LINEAR NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

Tadumadze T.

Abstract

In the paper the following inverse problem is considered: find such initial functions that the value of corresponding solution at given moment is equal to a fixed vector. On the basis of necessary conditions an algorithm is provided for the approximate solution of the inverse problem.

Keywords and phrases: Inverse problem, neutral functional differential equation, necessary optimality conditions.

AMS subject classification (2010): 34K40, 34K29.
Let \mathbb{R}^{n} be an n-dimensional vector space of points $x=\left(x^{1}, \ldots, x^{n}\right)^{T}$ with

$$
|x|^{2}=\sum_{i=1}^{n}\left(x^{i}\right)^{2}
$$

Let $K_{1} \subset \mathbb{R}^{n}, K_{2} \subset \mathbb{R}^{n}$ be convex compact sets, let $\tau(t), t \in \mathbb{R}$ and $\eta(t), t \in \mathbb{R}$ be continuously differentiable scalar functions (delay functions) satisfying the conditions

$$
\tau(t)<t, \eta(t)<t, \dot{\tau}(t)>0, \dot{\eta}(t)>0 .
$$

Let $t_{0}<t_{1}$ be given numbers with $\tau\left(t_{1}\right)>t_{0}$ and $\eta\left(t_{1}\right)>t_{0}$. By Δ_{1} and Δ_{2} we denote, respectively, the sets of measurable initial functions $\varphi:\left[\hat{\tau}, t_{0}\right] \rightarrow K_{1}$ and $g:\left[\hat{\tau}, t_{0}\right] \rightarrow K_{2}$, where $\hat{\tau}=t_{0}-\max \left\{\tau\left(t_{0}\right), \eta\left(t_{0}\right)\right\}$.

To each element (initial data) $w=(\varphi(t), g(t)) \in W=\Delta_{1} \times \Delta_{2}$ we assign the linear neutral functional differential equation

$$
\begin{equation*}
\dot{x}(t)=A(t) x(t)+B(t) x(\tau(t))+C(t) \dot{x}(\eta(t)) \tag{1}
\end{equation*}
$$

with the initial condition

$$
\left\{\begin{array}{l}
x(t)=\varphi(t), t \in\left[\hat{\tau}, t_{0}\right], \quad\left(\varphi\left(t_{0}\right)=\varphi\left(t_{0}-\right)\right), \tag{2}\\
\dot{x}(t)=g(t), t \in\left[\hat{\tau}, t_{0}\right),
\end{array}\right.
$$

where $A(t), B(t), C(t), t \in\left[t_{0}, t_{1}\right]$, are given continuous matrix functions with appropriate dimensions.

Definition. Let $w=(\varphi(t), g(t)) \in W$, a function $x(t)=x(t ; w) \in \mathbb{R}^{n}, t \in\left[\hat{\tau}, t_{1}\right]$ is called a solution of differential equation (1) with the initial condition (2) or a solution corresponding to the element w if $x(t)$ satisfies the initial condition (2) is absolutely continuous on the interval $\left[t_{0}, t_{1}\right]$ and satisfies equation (1) almost everywhere.

For every element $w \in W$ there exists a unique solution $x(t ; w)$ defined on the interval $\left[\hat{\tau}, t_{1}\right]$.

Introduce the set

$$
Y=\left\{y \in \mathbb{R}^{n}: \exists w \in W, x\left(t_{1} ; w\right)=y\right\} .
$$

The inverse problem. Let $y \in Y$ be a given vector. Find element $w \in W$ such that the following condition holds

$$
x\left(t_{1} ; w\right)=y .
$$

The vector y, as a rule, by distinct error is beforehand given. Thus instead of the vector y we have \hat{y} (so called observed vector) which is an approximation to the y and in general, $\hat{y} \notin Y$. Therefore it is natural to change the posed inverse problem by the following approximate problem.
The approximate inverse problem. Find an element $w \in W$ such that the deviation

$$
\frac{1}{2}\left|x\left(t_{1} ; w\right)-\hat{y}\right|^{2}
$$

takes the minimal value.
It is clear that the approximate inverse problem is equivalent to the following optimization problem:

$$
\begin{gather*}
\dot{x}(t)=A(t) x(t)+B(t) x(\tau(t))+C(t) \dot{x}(\eta(t)) \tag{3}\\
x(t)=\varphi(t), t \in\left[\hat{\tau}, t_{0}\right], \dot{x}(t)=g(t), t \in\left[\hat{\tau}, t_{0}\right), \tag{4}\\
J(w)=\frac{1}{2}\left|x\left(t_{1} ; w\right)-\hat{y}\right|^{2} \rightarrow \min , w \in W . \tag{5}
\end{gather*}
$$

Problem (3)-(5) is called an optimal control problem corresponding to the inverse problem.

Theorem 1.([1]) There exists an optimal element $w_{0}=\left(\varphi_{0}(t), g_{0}(t)\right)$ for problem (3)-(5).

Theorem 2.([1]) Let $w_{0}=\left(\varphi_{0}(t), g_{0}(t)\right) \in W$ be an optimal element. Then the following conditions hold:

1) the condition for the initial function $\varphi_{0}(t)$

$$
\begin{gathered}
\psi(\gamma(t)) B(\gamma(t)) \dot{\gamma}(t) \varphi_{0}(t)=\max _{\varphi \in K_{1}} \psi(\gamma(t)) B(\gamma(t)) \dot{\gamma}(t) \varphi, \\
t \in\left[\tau\left(t_{0}\right), t_{0}\right],
\end{gathered}
$$

where $\gamma(t)$ is the inverse function of $\tau(t)$;
2) the condition for the initial function $g_{0}(t)$

$$
\begin{gathered}
\psi(\rho(t)) C(\rho(t)) \dot{\rho}(t) g_{0}(t)=\max _{g \in K_{2}} \psi(\rho(t)) C(\rho(t)) \dot{\rho}(t) g, \\
t \in\left[\eta\left(t_{0}\right), t_{0}\right] .
\end{gathered}
$$

where $\rho(t)$ is the inverse function of $\eta(t)$.
Here $(\psi(t), \chi(t))$ is solution of the system

$$
\left\{\begin{array}{l}
\dot{\chi}(t)=-\psi(t) A(t)-\psi(\gamma(t)) B(\gamma(t)) \dot{\gamma}(t) \tag{6}\\
\psi(t)=\chi(t)+\psi(\rho(t)) C(\rho(t)) \dot{\rho}(t)
\end{array}\right.
$$

with the initial condition

$$
\psi\left(t_{1}\right)=\chi\left(t_{1}\right)=-\left(x_{0}\left(t_{1}\right)-\hat{y}\right)^{T}, \psi(t)=\chi(t)=0, t>t_{1} .
$$

Let the optimal element $w_{0}=\left(\varphi_{0}(t), g_{0}(t)\right)$ be unique and conditions 1) and 2) give the unique initial functions $\varphi(t)$ and $g(t)$, respectively.
The algorithm. Let $\varphi_{1}(t) \in \Delta_{1}$ and $g_{1}(t) \in \Delta_{2}$ be starting approximation of the initial functions. We construct the sequences

$$
\left\{\varphi_{k}(t)\right\},\left\{g_{k}(t)\right\},\left\{x_{k}(t)\right\},\left\{\psi_{k}(t)\right\},\left\{\chi_{k}(t)\right\}
$$

by the following process:
3) for given $\varphi_{1}(t)$ and $g_{1}(t)$ find $x_{1}(t)$: the solution of the differential equation (3) with the initial condition

$$
x(t)=\varphi_{1}(t), t \in\left[\tau\left(t_{0}\right), t_{0}\right], \dot{x}(t)=g_{1}(t), t \in\left[\eta\left(t_{0}\right), t_{0}\right) ;
$$

4) find $\psi_{1}(t)$ and $\chi_{1}(t)$: the solution of the differential equation (6) with the initial condition

$$
\psi\left(t_{1}\right)=\chi\left(t_{1}\right)=-\left(x_{1}\left(t_{1}\right)-\hat{y}\right), \psi(t)=\chi(t)=0, t>t_{1}
$$

5) find the next iterations $\varphi_{2}(t)$ and $g_{2}(t)$ from 1) and 2), respectively.
6) if

$$
\left|J\left(w_{1}\right)-J\left(w_{2}\right)\right| \leq \varepsilon
$$

stop, where $w_{1}=\left(\varphi_{1}(t), g_{1}(t)\right), w_{2}=\left(\varphi_{2}(t), g_{2}(t)\right)$ and ε is a given number.
If

$$
\left|J\left(w_{1}\right)-J\left(w_{2}\right)\right|>\varepsilon
$$

go to 3).
Theorem 3. The following relations are valid:

$$
\begin{gathered}
\lim _{k \rightarrow \infty} \varphi_{k}(t)=\varphi_{0}(t) \text { weakly in the space } L\left[\tau\left(t_{0}\right), t_{0}\right] ; \\
\lim _{k \rightarrow \infty} g_{k}(t)=g_{0}(t) \text { weakly in the space } L\left[\sigma\left(t_{0}\right), t_{0}\right] ; \\
\lim _{k \rightarrow \infty} x_{k}(t)=x_{0}(t) \text { uniformly for } t \in\left[t_{0}, t_{1}\right] ; \\
\lim _{k \rightarrow \infty} \sup _{\left[t_{0}, t_{1}\right]}\left|\psi_{k}(t)-\psi(t)\right|=0 ; \\
\lim _{k \rightarrow \infty} \chi_{k}(t)=\chi(t) \text { uniformly for } t \in\left[t_{0}, t_{1}\right] .
\end{gathered}
$$

Moreover, $w_{0}=\left(\varphi_{0}(t), g_{0}(t)\right)$ is an optimal element, $x_{0}(t)=x\left(t ; w_{0}\right)$ is an optimal trajectory, $(\psi(t), \chi(t))$ is the solution of equation (6) corresponding to w_{0}.

Theorem 3 is proved by the scheme given in [2].
Acknowledgement. The work was supported by the Shota Rustaveli National Science Foundation, grant 31/23.

REFERENCES

1. Tadumadze T., Gorgodze N. Variation formulas of a solution and initial data optimization problems for quasi-linear neutral functional differential equations with discontinuous initial condition. Mem. Differential Equations Math. Phys, 63 (2014), 1-77.
2. Tadumadze T. An inverse problem for some classes of linear functional differential equations. Applied and Computational Mathematics, 8, 2 (2009), 239-250.

Received 15.05.2015; revised 20.06.2015; accepted 20.07.2015.
Author's address:
T. Tadumadze
Iv. Javakhishvili Tbilisi State University

Department of Mathematics \&
I. Vekua Institute of Applied Mathematics

2, University St., Tbilisi 0186
Georgia
E-mail: tamaz.tadumadze@tsu.ge

