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Abstract. In the present work we consider the problem of statics of the linear theory of

elastic mixture of finding a full-strength contour for a finite doubly-connected domain whose

outer boundary is a convex polygon, while the inner boundary is a smooth closed contour. It

is assumed that absolutely smooth rigid punches are applied to every link of the polygon. The

punches are under the action of external normal contractive forces. The goal of the problem

is to find an unknown contour under the condition that tangential normal stress vector on it

takes constant value.
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1. Introduction

The problems of the plane theory of elasticity for infinite domains weakened by
equally strong holes have been studied by many authors, particularly in [1], [9] the same
problem for simple and doubly-connected domains with partially unknown boundaries
are investigated in [2], [10] etc. The mixed boundary value problems of the plane theory
of elasticity for domain with partially unknown boundaries have been studied by R.
Bantsuri [3]. Analogous problem in the case of the plane theory of elastic mixtures is
considered in [15].

In [14] using the method suggested by R. Bantsury in [4], the author gives a solution
of the mixed problem of the plane theory of elasticity for a finite multiply connected
domain with a partially unknown boundary having the axis of symmetry. Analogous
problem in the case of the plane theory of elastic mixtures has been studied in [16].
The problem of statics of the plane theory of elasticity of finding an equally strong
contour for square which is weakened by a hole and by cuttings at vertices have been
investigated in [5] by R. Bantsuri and G. Kapanadze. The analogous problem in the
case of the plane theory of elastic mixtures has been studied in [17].

In the work of R. Bantsuri and G. Kapanadze [6] the problem of statics of the plane
theory of elasticity of finding a full-strength contour inside the polygon are considered.

In the present paper in the case of the plane theory of elastic mixtures we study
the problem analogous to that solved in [6]. For the solution of the problem the use
will be made of the generalized Kolosov-Muskhelishvili’s formula [17] and the method
developed in [6].

2. Some auxiliary formulas and operators

The homogeneous equation of statics of the theory of elastic mixtures in a complex
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form looks as follows [8]
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e3+k, e1 = a2/d2 e2 = −c/d2, e3 = a1/d2, d2 = a1a2 − c2,

a1 = µ1 − λ5, a2 = µ2 − λ5, c = µ3 + λ5, e1 + e4 = b/d1, e2 + e5 = −c0/d1,

e3 + e6 = a/d1, d1 = ab− c20, b1 = µ1 + λ1 + λ5 − α2ρ2/ρ,

b2 = µ2 + λ2 + λ5 + α2ρ1/ρ, α2 = λ3 − λ4, ρ = ρ1 + ρ2, a = a1 + b1, b = a2 + b2

c0 = c+ d, d = µ2 + λ3 − λ5 − α2ρ1/ρ ≡ µ3 + λ4 − λ5 + α2ρ2/ρ.

Here µ1, µ2, µ3, λp, p = 1, 5 are elasticity modules characterizing mechanical
properties of a mixture, ρ1 and ρ2 are its particular densities. The elastic constants
µ1, µ2, µ3, λp, p = 1, 5 and particular densities ρ1 and ρ2 will be assumed to satisfy
the conditions of the inequality [13].

In [7] M. Basheleishvili obtained the following representations:
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)
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1

2
zeφ′(z) + ψ(z), (2.2)
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∂
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]
, (2.3)

where φ = (φ1, φ2)
T and ψ = (ψ1, ψ2)

T are arbitrary analytic vector-functions;
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]
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[
m1 m2

m2 m3

]
, E =

[
1 0
0 1

]
,

∂

∂(x)
= −n2

∂

∂x1
+ n1

∂

∂x2
,

∂

∂n(x)
= n1

∂
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T is the unit vector of the outer normal, (TU)p, p = 1, 4, the stress compo-

nents [7]
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(TU)1 = r
′

11n1 + r
′

21n2, (TU)2 = r
′

12n1 + r
′

22n2,

(TU)3 = r
′′

11n1 + r
′′

21n2, (TU)4 = r
′′

12n1 + r
′′

22n2,

r
′

11 = aθ
′
+ c0θ

′′ − 2
∂

∂x2
(µ1u2 + µ3u4), r

′

21 = −a1ω
′ − cω

′′
+ 2

∂

∂x1
(µ1u2 + µ3u4),

r
′

12 = a1ω
′
+ cω

′′
+ 2

∂

∂x2
(µ1u1 + µ3u3), r

′

22 = aθ
′
+ c0θ

′′ − 2
∂

∂x1
(µ1u1 + µ3u3),

r
′′

11 = c0θ
′
+ bθ

′′ − 2
∂

∂x2
(µ3u2 + µ2u4), r

′′

21 = −cω′ − a2ω
′′
+ 2

∂

∂x1
(µ3u2 + µ2u4),

r
′′

12 = cω
′
+ a2ω

′′
+ 2

∂

∂x2
(µ3u1 + µ2µ3), r

′′

22 = c0θ
′
+ bθ

′′ − 2
∂

∂x1
(µ3u1 + µ2u3),

θ
′′
= duυν

′
, θ

′′
= duυν

′′
, ω

′
= rotu

′
, ω

′′
= rotu

′′
.

Introduce the vectors:

τ (1) = (r
′

11, r
′′

11)
T , τ (2) = (r

′

22, r
′′

22)
T , τ = τ (1) + τ (2), (2.4)

η(1) = (r
′

21, r
′′

21)
T , η(2) = (r

′

12, r
′′

12)
T , η = η(1) + η(2), ε∗ = η(1) − η(2). (2.5)

Let (n, S) be the right rectangular system, where S and n are respectively, the
tangent and the normal of the curve L at the point t = t1 + it2. Assume that n =
(n1, n2)

T = (cosα, sinα)T and S0 = (−n2, n1)
T = (−sinα, cosα)T , where α is the angle

of inclination of the normal n to the ox1 axis.
Introduce the vectors

Un = (u1n1 + u2n2, u3n1 + u4n2)
T , US = (u2n1 − u1n2, u4n1 − u3n2)

T , (2.6)

σn =

(
(TU)1n1 + (TU)2n2

(TU)3n1 + (TU)4n2

)
, σS =

(
(TU)2n1 − (TU)1n2

(TU)4n1 − (TU)3n2

)
, (2.7)

σt =

( [
r
′
21n1 − r

′
11n2, r

′
22n1 − r

′
12n2

]T
S0[

r
′′
21n1 − r

′′
11n2, r

′′
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′′
12n2

]T
S0

)
. (2.8)

Let us call the vector (2.8) the tangential normal stress vector in the linear theory of
elastic mixture.

After elementary calculations we obtain

σn = τ (1)cos2α + τ (2)sin2α + ηsinαcosα,

σt = τ (1)sin2α + τ (2)cos2α− ηsinαcosα,

σs =
1

2

[
(τ (2) − τ (1))sin2α + ηcos2α− ε∗

]
.

Direct calculations allow us to check that on L [15]

σn + σt = τ = 2(2E − A−B)Reφ
′
(t), (2.9)
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σn + 2µ

(
∂Us

∂S
+
Un

ϱ0

)
+ i

[
σS − 2µ

(
∂Un

∂S
− Us

ϱ0

)]
= 2φ

′
(t), (2.10)

[(A− 2E)φ(t) +Btφ′(t) + 2µψ(t)]L = −i
∫
L

eiα(σn + iσs)ds, (2.11)

where det(2E − A − B) > 0, 1
ϱ0

is the curvature of L at the point t = t1 + it2.
Everywhere in the sequel it will be assumed that the components Un and Us are bounded
[8].

Formulas (2.2), (2.3), (2.9) and (2.10) are analogous in the linear theory of elastic
mixtures to those of Kolosov-Muskhelishvili [12].

3. Statement of the problem and the method of its solving

In the present work we consider the problem of statics of the linear theory of
elastic mixture of finding a full-strength contour for a finite doubly-connected domain
whose outer boundary is a convex polygon, while the inner boundary is a smooth
closed unknown contour. It is assumed that the unknown contour is free from external
stresses and absolutely smooth rigid punches are applied to the polygon boundary; the
punches are under action of normal contractive forces.

Our problem is to find strained state of the polygon (with a hole) and analytic form
of the unknown contour under the condition that the tangential normal stress vector
(2.8) on it takes constant value (the condition of the unknown contour full-strength).

Statement of the problem. Let smooth rigid punches be applied to the boundary
of a convex polygon which is weakened by an internal hole, and let the punches be
under the action of external normal contractive forces; the hole boundary is free from
external forces.

We consider the problem: Find elastic equilibrium of the polygon and analytic form
of an unknown contour under the condition that the tangential normal stress vector
on it takes constant value σt = K0, K0 = (K0

1 , K
0
2)

T = const.
By D we denote a doubly-connected domain whose internal boundary is a smooth

closed curve L1 (an unknown part of the boundary), and the external boundary is a
polygon L0. By A

0
j (j = 1, n) we denote vertices (and their affixes) or the polygon

(G0) and assume that the point z = 0 lies inside the contour L1. The positive direction
on L = L0

∪
L1 is taken that which leaves the domain D on the left.

It is not difficult to note that in the case under consideration the σS = 0 (see
(2.7)) on the entire boundary of D, and the Un(t) (see (2.6)) is a piecewise constant
(unknown) vector on L0.

Relying on the analogous Kolosov-Muskhelishvilis formulas (2.9) - (2.11) the above
posed problem is reduced to finding two analytic vector-functions φ(z) and ψ(z) in
domain D, by the following boundary conditions on L = L0

∪
L1 :

Reφ
′
(t) = H, t ∈ L1, H =

1

2
(2E − A−B)−1K0, (3.1)

Imφ
′
(t) = 0, t ∈ L0, (3.2)
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Ree−iα(t)
[
(A− 2E)φ(t) +Btφ′(t) + 2µψ(t)

]
= C(t), t ∈ L0, (3.3)

(A− 2E)φ(t) + Btφ′(t) + 2µψ(t) = 0, t ∈ L1, (3.4)

where α(t) is the angle lying between the ox1 − axis and external normal to the
boundary at the point t ∈ L0,

C(t) = Re{−i
∫ t

A0

σ(t0)expi[α(t0)− α(t)]dS0 + (δ(1) + iδ(2))exp(−iα(t))}, t ∈ L0,

δ(j) = (δ
(j)
1 , δ

(j)
2 )T , (j = 1, 2), are arbitrary real constant vectors.

Moreover if t ∈ L0 then we can write

Ret e−iα(t) = Ree−iα(t)A0(t),

where A0(t) = A0
k for t ∈ A0

kA
0
k+1.

Since α(t) is the piecewise constant function, we obtain for C(t) the representation

C(t) =
k∑

j=1

P (j)sin(αk − αj) + δ(1)cosαk + δ(2)sinαk = Ck,

for t ∈ A0
kA

0
k+1, k = 1, n, (A0

k+1 ≡ A0
1) where αk is the value of the function α(t)

on A0
kA

0
k+1,

P (j) = −
∫ Sj+1

Sj

σn(S)ds, j = 1, n,
n∑

k=1

P (k) cosαk =
n∑

k=1

P (k)sinαk = 0,

P (j) = (P
(j)
1 , P

(j)
2 )T ,

(the equilibrium conditions), Thus, C(t) is the piecewise constant vector-function con-
taining n arbitrary real constants to be defined in the sequel.

Now note that, the conditions (3.1) and (3.2) is the Keldysh-Sedov problem having
a solution [11]

φ(z) = Hz =
1

2
(2E − A−B)−1K0z, z ∈ D (3.5)

(an arbitrary constant is assumed to be equal to zero).
Let the function z = ω(ζ) map conformally a circular ring G(1 < |ζ| < R) onto

the domain D. We assume that the contour l0(|ζ| = R) turns into L0 and the contaur
l1(|ζ| = 1) into L1.

By virtue of (3.3), (3.4) and (3.5) for the vector-functions ψ0(ζ) = ψ[ω(ζ)] holo-
morphic in the ring G, we obtain the following boundary value problem:

Ree−iα(ξ)[
1

2
K0ω(ξ)− 2µψ0(ξ)] = −C(ξ), |ξ| = R, (3, 6)

1

2
K0ω(σ)− 2µψ0(σ) = 0 |σ| = 1. (3.7)
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Note that on l0 there takes place the equality

1

2
Ree−iα(σ)K0ω(σ) =

1

2
K0f0(σ) = F0(σ), (3.8)

where f0(σ) = Re[e−iα(σ)A0(σ)], A0(σ) = A0
k, σ ∈ l

(k)
0 (lk0 are the arcs of the

circumference l0 corresponding to the sides Lk
0) k = 1, n.

Let us consider a new unknown vector-function W (ζ) = (W1,W2)
T defined by the

formula

W (ζ) =

{ 1
2
K0ω(ζ), 1 < |ζ| < R,

2µψ0

(
1
ζ

)
, 1

R
< |ζ| < 1.

(3.9)

By the conditions (3.7) and (3.8) we can conclude that W (ζ) is the vector-function,
holomorphic in the ring G∗( 1

R
< |ζ| < R) and satisfying the boundary conditions

Ree−α(ξ)W (ξ) = F0(ξ), ξ ∈ l0,

Ree−α(σ)W (σ) = F ∗
0 (σ), σ ∈ l∗0, (3.10)

where l∗0 the circumference |ζ| = 1
R
, F ∗

0 (σ) = C(σ) + F0(σ).
Since F0(ξ) and F

∗
0 (σ) are the piecewise constant vector-functions, from (3.10) by

means of multiplication by the abscissa s, with respect to the vector-function W
′
(ζ)

we obtain the boundary value problem

Re[iσe−iα(σ)W
′
(σ)] = 0, σ ∈ l0Ul

∗
0 (3.11)

Consider now the polygon (G1) lying completely inside the contour L1 and similar
to the polygon (G0); the corresponding vertices lie on one and the same ray emanating
from the point z = 0 (the similarity coefficient q remains unfixed yet).

We denote by A∗
j (that is, A∗

j = q−1A0
j ,), vertices of the polygon (G1) and by L∗

0

the boundary.
By D∗ we denote the doubly-connected domain which is bounded by the polygons

(G1) and (G0), and as the positive direction on the boundary of D∗ (L0

∪
L∗
0) we

choose that which leaves the domain D∗ on the left.
Let the function z = ω0(ζ) map conformally the circular ring G∗(R−1 < |ζ| < R)

onto the domain D∗ (this can be achieved by the choice of q). Assume that (|ζ| = R)
corresponds to L0 and l∗0 (|ζ| = R−1) corresponds to L∗

0.
Taking into account that on l0 and l∗0 the equalities:

Re[e−iα(ξ)1

2
K0ω0(ξ)] = F0(ξ), ξ ∈ l0,

Re[e−iα(σ)1

2
K0ω0(σ)] =

1

q
F0(σ), σ ∈ l∗0, (3.12)

take place, we obtain with respect to the vector-function 1
2
K0ω

′
0(ζ) the boundary value

problem (3.11). Thus the vector-functions W
′
(ζ) and 1

2
K0ω

′
0(ζ) satisfy one and the

same boundary conditions on l0Ul
∗
0



56 Svanadze K.

Taking into account the results cited in [6], we can conclude that the necessary and
sufficient condition for solving the problem (3.11) is of the form

n∏
k=1

( ak
R2

)γk−1
(
ak
q

)1−γk

= 1, (3.13)

and the solution itself is given by the formula

W
′
(z) = ν

n∏
k=1

(ak
R

) 1
2
(γk−1)

(
1− ζ

ak

)γk−1(
1− ak

ζR2

)γk−1

T (ζ)[ζ2T (R2ζ)]−1, (3.14)

where by ak we denote the preimages of the points A0
k (ak ∈ l0), k = 1, n, ν =

(ν1, ν2)
T is an arbitrary real constant vector,πγk is the innear angle at the vertex

Ak, k = 1, n and

T (ζ) =
∞∏
j=1

n∏
k=1

(
1− ak

R4jζ

)γk−1(
1− ζ

R4jak

)γk−1

.

Since
∑n

k=1(γk − 1) = −2 form (3.13) we get the relation q = R2.
On the basis of the above results we can conclude that the problem of finding a

full-strength contour inside the polygon is closely connected with the problem of con-
formal mapping of a doubly-connected domain, bounded by polygons, onto the circular
ring. In order that the above-mentioned problems (3.10) and (3.12) be identical, it is
necessary that the equality (see [6])(

1− 1

R2

)
F0(σ) = C(σ), σ ∈ l∗0, (3.15)

hold, or what is the same thing,

1

2

(
1− 1

R2

)
K0(A(1)

m cosαm + A(2)
m sinαm) =

=
m∑
j=1

P (j)sin(αm − αj) + δ(1)cosαm + δ(2)sinαm, (3.16)

where A0
m = A

(1)
m + iA

(2)
m . m = 1, n.

If we choose the constants P (j) = (P
(j)
1 , P

(j)
2 )T , j = 1, n and δ(1), δ(2) (two of P (j)

are expressed through the rest ones) in such a way that the equality (3.16) holds, we
obtain W (ζ) = 1

2
K0ω0(ζ), and hence the equation of the unknown contour L1 will be

t = ω0(σ) =
2

K0
1

W1(σ) =
2

K0
2

W2(σ), σ ∈ l1

and the vector-function 2µψ0(ζ) will be represented in the form 2µψ0(ζ) =
1
2
K0ω0

(
1
ζ

)
,

ζ ∈ G.
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As an example, we consider the case with the rectilinear polygon (G0). Assume that
to every polygon side are applied punches whose middle is under the action of normal
concentrated force −P, (P = (P1, P2)

T ).
The coordinate origin is at the center of the polygon (G0) and the ox1 − axis is

perpendicular to the side A0
1, A

0
2. Owing to the symmetry in the case we may assume

that

A0
k = exp

[
−πi
n

+
2πi

n
(k − 1)

]
; αk =

2π

n
(k − 1) ak = Rexp

[
2πi

n
(k − 1)

]
.

It can be shown that the function f0(σ) = Re
[
e−iα(σ)A0(σ)

]
is constant: f0(σ) = rcosπ

n
,

and the vector-function C(t) in this case has the form

C(t) =
P

2 sin π
n

[
cos

π

n
− cos

π

n
(2k − 1)

]
+ ν(1) cos

2π

n
(k − 1)+

ν(2) sin
2π

n
(k − 1) =

1

2
P

[
ctg

π

n
− cos

2π

n
(k − 1)ctg

π

n
+ sin

2π

n
(k − 1)

]
+

+ν(1) cos
2π

n
(k − 1) + ν(2) sin

2π

n
(k − 1).

Taking ν(1) = 1
2
Pctg π

n
; ν(2) = −1

2
P , we get C(t) = −1

2
Pctg π

n
and hence (3.15)

results in the relation

K0 =
PR2

r(R2 − 1) sin π
n

. (3.17)

In particular, if we assume that the polygon side is equal to unity, i.e. an =
2r sin π

n
= 1, then from (3.17) we obtain

K0 =
2PR2

R2 − 1
,

whence we conclude that K0
j > 2Pj; (j = 1, 2) and also, when R increases (i.e. when

the hole shrinks to the point) K0 → 2P, while as R → 1 i.e., when K0 increases and
does not exceed critical value, the hole contour approaches to that of the polygon.
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