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Abstract. The estimation of the increment of solution is obtained with respect to small

parameter for nonlinear delay functional differential equation with the continuous initial con-

dition. Moreover, value of the increment is calculated at the initial moment. This estimation

plays an important role in proving the variation formulas of solution.
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Let Rn
x be the n-dimensional vector space of points x = (x1, ..., xn)T , where T is

the sign of transposition; suppose that O ⊂ Rn
x and V ⊂ Rr

u are open sets. Let
the n-dimensional function f(t, x, y, u) satisfy the following conditions: for almost all
t ∈ I = [a, b], the function f(t, ·) : O2 × V → Rn

x is continuously differentiable; for any
(x, y, u) ∈ O2 × V, the functions

f(t, x, y, u), fx(t, x, y, u), fy(t, x, y, u), fu(t, x, y, u)

are measurable on I; for arbitrary compacts K ⊂ O,U ⊂ V there exists a function
mK,U(t) ∈ L(I, [0,∞)), such that for any (x, y, u) ∈ K2 × U and for almost all t ∈ I
the following inequality is fulfilled

| f(t, x, y, u) | + | fx(t, x, y, u) | + | fy(t, x, y, u) | + | fu(t, x, y, u) |≤ mK,U(t).

Furthermore, let 0 < τ1 < τ2 be given numbers and let Eφ be the space of continuous
functions φ : I1 → Rn

x, where I1 = [τ̂ , b], τ̂ = a − τ2; Φ = {φ ∈ Eφ : φ(t) ∈ O, t ∈ I1}
is a set of initial functions; let Eu be the space of bounded measurable functions
u : I → Rr

u and let Ω = {u ∈ Eu : clu(I) ⊂ V } be a set of control functions, where
u(I) = {u(t) : t ∈ I} and clu(I) is closer of the set u(I).

To each element µ = (t0, τ, φ, u) ∈ Λ = (a, b) × (τ1, τ2) × Φ × Ω we assign the
controlled delay functional differential equation

ẋ(t) = f(t, x(t), x(t− τ), u(t)) (1)

with the initial condition
x(t) = φ(t), t ∈ [τ̂ , t0]. (2)

Condition (2) is said to be a continuous initial condition since always x(t0) = φ(t0).
Definition 1. Let µ = (t0, τ, φ, u) ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈

[τ̂ , t1], t1 ∈ (t0, b), is called a solution of equation (1) with the initial condition (2) or
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a solution corresponding to µ and defined on the interval [τ̂ , t1] if it satisfies condition
(2) and is absolutely continuous on the interval [t0, t1] and satisfies equation (1) almost
everywhere on [t0, t1].

Let µ0 = (t00, τ0, φ0, u0) ∈ Λ be a fixed element. In the space Eµ = R1
t0
×R1

τ×Eφ×Eu

we introduce the set of variations:

V = {δµ = (δt0, δτ, δφ, δu) ∈ Eµ − µ0 : | δt0 |≤ α, | δτ |≤ α,

δφ =
k∑

i=1

λiδφi, δu =
k∑

i=1

λiδui, | λi |≤ α, i = 1, k},

where δφi ∈ Eφ − φ0, δui ∈ Eu − u0, i = 1, k are fixed functions ; α > 0 is a fixed
number.

Theorem 1([1]). Let x0(t) be the solution corresponding to µ0 = (t00, τ0, φ0, u0)∈ Λ
and defined on [τ̂ , t10], t10 ∈ (t00, b) and let K0 ⊂ O and U0 ⊂ V be compact sets
containing neighborhoods of sets φ0(I1) ∪ x0([t00, t10]) and clu0(I), respectively. Then
there exist numbers ε1 > 0 and δ1 > 0 such that, for any (ε, δµ) ∈ [0, ε1]× V, we have
µ0+εδµ ∈ Λ. In addition, a solution x(t;µ0+εδµ) defined on the interval [τ̂ , t10+δ1] ⊂
I1 corresponds to this element. Moreover,{

x(t;µ0 + εδµ) ∈ K0, t ∈ [τ̂ , t10 + δ1],

u0(t) + εδu(t) ∈ U0, t ∈ I.
(3)

Due to the uniqueness, the solution x(t;µ0) is a continuation of the solution x0(t)
on the interval [τ̂ , t10 + δ1].

Theorem 1 allows one to define the increment of the solution x0(t) = x(t;µ0) :{
∆x(t; εδµ) = x(t;µ0 + εδµ)− x0(t),

(t, ε, δµ) ∈ [τ̂ , t10 + δ1]× [0, ε1]× V.

Theorem 2. Let the following conditions hold:
1. the function φ0(t), t ∈ I1 is absolutely continuous and the function φ̇0(t) is

bounded;
2. there exist compact sets K0 ⊂ O and U0 ⊂ V containing neighborhoods of

sets φ0(I1)∪x0([t00, t10]) and clu0(I), respectively, such that the function f(t, x, y, u) is
bounded on the set I ×K2

0 × U0;
3. there exist the limits

lim
t→t00−

φ̇0(t) = φ̇−
0 , lim

w→w0

f(w, u0(t)) = f−,

where w = (t, x, y) ∈ (a, t00] × O2, w0 = (t00, φ0(t00), φ0(t00 − τ0)). Then there exist
numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that

max
t∈[τ̂ ,t10+δ2]

| ∆x(t; εδµ) |≤ O(εδµ) (4)



48 Shavadze T.

for arbitrary (ε, δµ) ∈ [0, ε2]× V −, where V − = {δµ ∈ V : δt0 ≤ 0}. Moreover,

∆x(t00; εδµ) = ε
[
δφ(t00) + {φ̇−

0 − f−}δt0
]
+ o(εδµ).

Here the symbols O(t; εδµ), o(t; εδµ) stand for quantities that have the correspond-
ing order of smallness with respect to ε uniformly with respect to t and δµ.

Theorem 3. Let the conditions 1 and 2 of Theorem 2 hold and there exist the
limits

lim
t→t00+

φ̇0(t) = φ̇+
0 , lim

w→w0

f(w, u0(t)) = f+, w ∈ [t00, b)×O2.

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that inequality (4) is valid
for arbitrary (ε, δµ) ∈ [0, ε2]× V +, where V + = {δµ ∈ V : δt0 ≥ 0}. Moreover,

∆x(t00 + εδt0; εδµ) = ε
[
δφ(t00) + {φ̇+

0 − f+}δt0
]
+ o(εδµ).

Theorems 2 and 3 are proved by the scheme given in [2,3].
Theorem 4. Let the conditions of Theorems 2 and 3 hold. Moreover,

φ̇−
0 − f− = φ̇+

0 − f+ := f̂ .

Then there exist numbers ε2 ∈ (0, ε1] and δ2 ∈ (0, δ1] such that inequality (4) is valid
for arbitrary (ε, δµ) ∈ [0, ε2]× V and

∆x(t00 + εδt0; εδµ) = ε
[
δφ(t00) + f̂ δt0

]
+ γ(εδµ), (5)

where

γ(εδµ) =

{
o(εδµ) + Ô(εδµ) for δt0 ≤ 0,

o(εδµ) for δt0 ≥ 0.

Here Ô(εδµ) = 0 for δt0 = 0.
Proof. It is clear that inequality (4) holds for arbitrary (ε, δµ) ∈ [0, ε2] × V and

formula (5) is valid for δt0 ≥ 0 .
Let δt0 ≤ 0 then

∆x(t00 + εδt0; εδµ)−∆x(t00; εδµ) =

∫ t00+εδt0

t00

∆̇x(t; εδµ)dt

=

∫ t00+εδt0

t00

[f(t, x(t;µ0 + εδµ), x(t− τ ;µ0 + εδµ), u(t))− φ̇0(t)]dt = Ô(εδµ),

(see (3) and the conditions 1 and 2 ), i.e.

∆x(t00 + εδt0; εδµ) = ∆x(t00; εδµ) + Ô(εδµ)

= ε
[
δφ(t00) + f̂ δt0

]
+ o(εδµ) + Ô(εδµ).
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