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Let T2 := [−π, π)2 denote a cube in the 2-dimensional Euclidean space R2. The
elements of R2 are denoted by (x, y).

The notation a . b in the paper stands for a ≤ cb, where c is an absolute constant.
We denote by L0(T2) the Lebesgue space of functions that are measurable and finite

almost everywhere on T2. mes(A) is the Lebesgue measure of the set A ⊂ T2.
We denote by Lp (T2) the class of all measurable functions f that are 2π-periodic

with respect to all variables and satisfy

∥f∥p :=

∫
T2

|f |p
1/p

< ∞.

The weak − L1 (T2) space consists of all measurable, 2π-periodic relative to each
variable functions f for which

∥f∥weak−L1(T2) := sup
λ

λmes
{
(x, y) ∈ T2 : |f (x, y)| > λ

}
< ∞.

Let f ∈ L1 (T2) . The Fourier series of f with respect to the trigonometric system
is the series

S [f ] :=
+∞∑

n,m=−∞

f̂ (n,m) ei(nx+my),

where

f̂ (n,m) :=
1

(2π)2

∫
T2

f(x, y)e−i(nx+my)dxdy

are the Fourier coefficients of the function f . The rectangular partial sums are defined
as follows:

SNM(f ;x, y) :=
N∑

n=−N

M∑
m=−M

f̂ (n,m) ei(nx+my).

In the literature the notion of the Riesz’s logarithmic means of a Fourier series is
known. The n-th Riesz logarithmic mean of the Fourier series of the integrable function
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f is defined by
1

ln

n∑
k=0

Sk(f)

k + 1
, ln :=

n∑
k=0

1

k + 1
,

where Sk(f) is the partial sum of its Fourier series. This Riesz’s logarithmic means
with respect to the trigonometric system has been studied by a lot of authors. We
mention for instance the papers of Szász, and Yabuta [13, 15]. This mean with respect
to the Walsh, Vilenkin system is discussed by Simon, and Gát [12, 2].

Let {qk : k ≥ 0} be a sequence of nonnegative numbers. The Nörlund means for
the Fourier series of f are defined by

1∑n
k=0 qk

n∑
k=0

qkSn−k(f).

If qk =
1

k+1
, then we get the (Nörlund) logarithmic means:

Ln (f ;x) :=
1

ln

n∑
k=0

Sn−k(f)

k + 1
. (1)

Although, it is a kind of “reverse” Riesz’s logarithmic means. In [5] some convergence
and divergence properties of the logarithmic means of Walsh-Fourier series of functions
in the class of continuous functions, and in the Lebesgue space L are proved.

In one of his last papers [14] Tkebuchava constructed a set of logarithmic summation
methods which contains both of the above mentioned logarithmic summation methods
as limit cases. Namely, for any integers n, n0 such that 0 ≤ n0 ≤ n let Tkebuchava’s
means Tn,n0 be defined by

Tn,n0 (f ;x)

: =
1

l (n, n0)

(
n0−1∑
k=0

Sk (f ; x)

n0 − k + 1
+ Sn0 (f ; x) +

n∑
k=n0+1

Sk (f ;x)

k − n0 + 1

)
,

where

l (n, n0) :=

n0−1∑
k=0

1

n0 − k + 1
+ 1 +

n∑
k=n0+1

1

k − n0 + 1
.

It is clear that l (n, n0) ≍ log n. This summation method includes the Riesz (for
n0 = 0) and Nörlund (for n0 = n) logarithmic methods, too.

Define the kernels Fn,n0 of Tkebuchava’s means by

Fn,n0 :=
1

l (n, n0)

(
n0−1∑
k=0

Dk

n0 − k + 1
+Dn0 +

n∑
k=n0+1

Dk

k − n0 + 1

)
.

Tkebuchava [14] gave estimates of kernels. Namely, the following theorem holds.
Theorem T (Tkebuchava). Let 0 ≤ n0 ≤ n. Then

1 +
log2 (n0 + 2)

log (n+ 2)
. ∥Fn,n0∥L1(T) . 1 +

log2 (n0 + 2)

log (n+ 2)
.
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The mixed logarithmic means of double Fourier series are defined by

(Ln ◦Rm) (f ; x, y) :=
1

lnlm

n∑
i=0

m∑
j=0

Sn−i,j (f ;x, y)

(i+ 1) (j + 1)
.

The Nörlund logarithmic means and Riesz logarithmic means of double Fourier
series are defined by

(Ln ◦ Lm) (f ;x, y) :=
1

lnlm

n∑
i=0

m∑
j=0

Sn−i,m−j (f ;x, y)

(i+ 1) (j + 1)
,

(Rn ◦Rm) (f ;x, y) :=
1

lnlm

n∑
i=0

m∑
j=0

Si,j (f ;x, y)

(i+ 1) (j + 1)
,

respectively.
It is evident that

(Ln ◦ Lm) (f ; x, y) =
1

π2

∫
T2

f (s, t)Fn (x− s)Fm (y − t) dsdt,

(Rn ◦Rm) (f ;x, y) =
1

π2

∫
T2

f (s, t)Gn (x− s)Gm (y − t) dsdt

and

(Ln ◦Rm) (f ;x, y) =
1

π2

∫
T2

f (s, t)Fn (x− s)Gm (y − t) dsdt,

where

Fn (u) :=
1

ln

n∑
i=0

Dn−i (u)

i+ 1
, Gn (u) :=

1

ln

n∑
i=0

Di (u)

i+ 1
.

Let LQ = LQ(T2) be the Orlicz space ([10], Ch 2) generated by Young function Q,
i.e. Q is a convex continuous even function such that Q(0) = 0 and

lim
u→+∞

Q (u)

u
= +∞, lim

u→0

Q (u)

u
= 0.

This space is endowed with the norm

∥f∥LQ(T2) = inf{k > 0 :

∫
T2

Q(|f | /k) ≤ 1}.

In particular, if Q(u) = u logβ(1 + u) (u, β > 0), then the corresponding space will
be denoted by L logβ L(T2).

The rectangular partial sums of double Fourier series Sn,m (f ;x, y) of the function
f ∈ Lp (T2) , 1 < p < ∞ converge in Lp norm to the function f , as n → ∞ [16]. In the
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case L1 (T2) this result does not hold . But for one dimensional case and for f ∈ L1 (T),
the operator Sn (f) is of weak type (1,1) [17]. This estimate implies convergence of
Sn (f ;x) in measure on T to the function f ∈ L1 (T). However, for double Fourier series
this result does not hold [9, 11]. Moreover, it is proved that quadratical partial sums
Sn,n (f ;x, y) of double Fourier series do not converge in two-dimensional measure on
T2 even for functions from Orlicz spaces wider than the Orlicz space L logL (T2). On
the other hand, it is well-known that if the function f ∈ L logL (T2), then rectangular
partial sums Sn,m (f ; x, y) converge in measure on T2.

Classical regular summation methods often improve the convergence of Fourier
seeries. For instance, the Fejér means of the double Fourier series of the function
f ∈ L1 (T2) converge in L1 (T2) norm to the function f [16]. These means present the
particular case of the Nörlund means.

It is well known that the method of Nörlund logarithmic means of double Fourier
series is weaker than the Cesáro method of any positive order. In [7] it is proved, that
these means of double Fourier series in general do not converge in two-dimensional mea-
sure on T2 even for functions from Orlicz spaces wider than Orlicz space L logL (T2).
Thus, not all classic regular summation methods can improve the convergence in mea-
sure of double Fourier series.

The results for summability of logarithmic means of Walsh-Fourier series can be
found in [3, 4, 6, 5, 13, 15].

In [7] the mixed logarithmic means (Ln ◦Rm) of rectangular partial sums multiple
Fourier series are considered and it is proved that these means are acting from space
L (T2) into space weak − L1 (T2). This fact implies that mixed logarithmic means of
rectangular partial sums of double Fourier series converge in measure. In particular,
the following is true.

Theorem GG1(Goginava, Gogoladze). Let f ∈ L1 (T2). Then

(Rn ◦ Lm) (f ;x, y) → f in measure on T2, as n,m → ∞.

Theorem GG2 (Goginava, Gogoladze). Let f ∈ L logL (T2). Then

(Ln ◦ Lm) (f ;x, y) → f in measure on T2, as n,m → ∞.

Theorem GG3 (Goginava, Gogoladze). Let LQ (T2) be an Orlicz space, such that

LQ

(
Td
)
" L logL

(
T2
)
.

Then the set of the functions from the Orlicz space LQ (T2) with logarithmic means
(Ln ◦ Lm) (f) of rectangular partial sums of double Fourier series convergent in mea-
sure on T2 is of first Baire category in LQ (T2) .

For any integers n, n0,m such that 0 ≤ n0 ≤ n we put

(Tn,n0 ◦ Lm) (f ;x, y) = f ∗ (Fn,n0 × Fm) .
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It is easy to show that

(Tn,n0 ◦ Lm) (f ; x, y) =
1

π2

∫
T2

f (s, t)Fn,n0 (x− s)Fm (y − t) dsdt.

This summation method includes the (Rn ◦ Lm) (for n0 = 0) and (Ln ◦ Lm) (for
n0 = n) methods, too.

On the basis of the above facts we can formulate the following problem:
Let f ∈ L1 (T2). What condition on the n0 = n0 (n) ensure the convergence in

measure on T2 of the (Tn,n0 ◦ Lm) means of the two-dimensional trigonometric Fourier
series?

A solution of this problem is given in
Theorem 1. a)Let f ∈ L1 (T2) and

log n0 (n) = O
(√

log n
)
.

Then
(Tn,n0 ◦ Lm) (f ;x, y) → f in measure on T2, as n,m → ∞.

b) Let

lim
n→∞

log n0 (n)√
log n

= ∞.

Then the set of the functions from the space L1(T2) with logarithmic means
(Tn,n0 ◦Lm)(f) of rectangular partial sums of double Fourier series convergent in mea-
sure on T2 is of first Baire category in L1 (T2) .

In order to prove Theorem we apply the reasoning of ([1], Ch. 1) formulated as the
following proposition in a particular case.

Theorem G. Let H : L1(T2) → L0(T2) be a linear continuous operator, which
commutes with family of translations E, i. e. ∀E ∈ E ∀f ∈ L1(T2) HEf = EHf .
Let ∥f∥L1(T2) = 1 and λ > 1. Then for any 1 ≤ r ∈ N under condition mes{(x, y) ∈
T2 : |Hf | > λ} ≥ 1

r
there exist E1, ..., Er, E

′
1, ..., E

′
r ∈ E and εi = ±1, i = 1, ..., r such

that

mes{(x, y) ∈ T2 :

∣∣∣∣∣H
(

r∑
i=1

εif(Eix,E
′
iy)

)∣∣∣∣∣ > λ} ≥ 1

8
.

Theorem GGT (Gát, Goginava, Tkebuchava). Let {Hm}∞m=1 be a sequence of lin-
ear continuous operators, acting from the space L1(T2) into the space L0(T2). Suppose
that there exists the sequence of functions {ξk}∞k=1 from the unit ball S(0, 1) of space
L1(T2), sequences of integers {mk}∞k=1 and {νk}∞k=1 increasing to infinity such that

ε0 = inf
k
mes{(x, y) ∈ T2 : |Hmk

ξk (x, y) | > νk} > 0.

Then K - the set of functions f from the space L1(T2), for which the sequence
{Hmf} converges in measure to an a. e. finite function is of first Baire category in
the space L1(T2).
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The proof of Lemma GGT can be found in [3].
Set

αkm :=
π (12k + 1)

6 (m+ 1/2)
, βkm :=

π (12k + 5)

6 (m+ 1/2)
, γm :=

π

6 (m+ 1/2)
,

Jm :=

[√
m+1−5
12

]∪
k=1

[αkm + γm, βkm − γm] .

Lemma T (Tkebuchava). Let 0 ≤ z ≤ γn and x ∈ Jn. Then

Fn,n0 (x− z) & log (n0 + 2)

x log (n+ 2)
.

The proof of Lemma T can be found in [6].
Proof of Theorem 1. a) In [8] it is proved that the one dimensional operator

Lm (f) := f ∗ Fm (see (1)) is of weak type (1, 1), i. e. for f ∈ L1 (T1) we have

∥Lm (f)∥weak−L1(T1) . ∥f∥L1(T1) . (2)

On the other hand, Tkebuchava in [14] proved that

sup
n

∥Fn,n0∥L1(T) < ∞

when
log n0 = O

(√
log n

)
. (3)

Set
Ω :=

{
(x, y)∈T2 : |(Tn,n0 ◦ Lm) (f ,x,y)| > λ

}
.

Then from (2) and (3) we have

λmes (Ω) (4)

= λ

∫
T2

IΩ (x, y) dxdy = λ

∫
T

∫
T

IΩ (x, y) dy

 dx

. ∥(f ∗ Fn,n0) (f)∥L1(T2) . ∥f∥L1(T2) ,

where IE is a characteristic function of the set E.
By virtue of standart argument (see [17]) we can prove the validity of part a) from

the estimation (4).
Now, we prove part b). Let

lim
n→∞

log n0 (n)√
log n

= lim
k→∞

log n0 (nk)√
log nk

= ∞.

By Lemma GGT the proof of Theorem will be complete if we show that there exists
for the sequences of integers {nk : k ≥ 1} and {νk : k ≥ 1} increasing to infinity, and
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a sequence of functions {ξk : n ≥ 1} from the unit bull S (0, 1) of space L1 (T2), such
that for all n

mes{(x, y) ∈ T2 :
∣∣(Tnk,n0(nk) ◦ Lnk

)
(ξk; x, y)

∣∣ > νk} ≥ 1

8
. (5)

First, we prove that

mes

{
(x, y) ∈ T2 :

∣∣∣∣∣(Tnk,n0(nk) ◦ Lnk

)(I
[0,γnk ]

2

γ2
nk

; x, y

)∣∣∣∣∣ & n
3/2
k

}
(6)

& log2 n0 (nk)

n
3/2
k log nk

.

From Lemma T we have(
Tnk,n0(nk) ◦ Lnk

)(I
[0,γnk ]

2

γ2
nk

; x, y

)
=

1

γ2
nk

1

π2

∫
[0,γnk ]

2

Fnk,n0(nk) (x− u)Fnk
(y − v) dudv

& log n0 (nk)

log nk

1

xy
, (x, y) ∈ Jnk

× Jnk
.

Set

si,nk
:=

√
nk log n0 (nk)

i log nk

.

Then we can write

mes

{
(x, y) ∈ T2 :

∣∣∣∣∣(Tnk,n0(nk) ◦ Lnk

)(I
[0,γnk ]

2

γ2
nk

;x, y

)∣∣∣∣∣ & n
3/2
k

}

≥ mes

{
(x, y) ∈ Jnk

× Jnk
:

∣∣∣∣∣(Tnk,n0(nk) ◦ Lnk

)(I
[0,γnk ]

2

γ2
nk

;x, y

)∣∣∣∣∣ & n
3/2
k

}

≥ mes

{
(x, y) ∈ Jnk

× Jnk
:
log n0 (nk)

log nk

1

xy
& n

3/2
k

}
= mes

{
(x, y) ∈ Jnk

× Jnk
: y . log n0 (nk)

xn
3/2
k log nk

}

& 1

n2
k

[√
n0(nk)+1−5

12

]
∑
i=1

si,nk∑
l=1

= c

[√
n0(nk)+1−5

12

]
∑
i=1

√
nk log n0 (nk)

in2
k log nk

& log2 n0 (nk)

n
3/2
k log nk

,
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Hence (6) is proved.
Then by the virtue of Theorem G there exists E1, ..., Erk , E

′
1, ..., E

′
rk

∈ E and
ε1, ..., εrk = ±1 such that

mes{(x, y) ∈ T2 :

∣∣∣∣∣
rk∑
i=1

εi
(
Tnk,n0(nk) ◦ Lnk

)(I
[0,γnk ]

2

γ2
nk

;Eix,E
′
iy

)∣∣∣∣∣ (7)

& n
3/2
k } >

1

8
,

where

rk ∼
n
3/2
k log nk

log2 n0 (nk)
.

Denote

νk =
log2 n0 (nk)

log nk

and

ξk (x, y) =
1

rk

rk∑
i=1

εi

I
[0,γnk ]

2 (Eix,E
′
iy)

γ2
nk

.

Thus, from (7) we obtain (5).
Finally, we prove that ξk ∈ S (0, 1). Indeed,

∥ξk∥L1(T2) ≤
1

rk

rk∑
i=1

∥∥∥∥I[0,γnk ]
2

∥∥∥∥
L1(T2)

γ2
nk

≤ 1.

Hence, ξk ∈ S (0, 1), and Theorem is proved.
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