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Abstract. The purpose of this paper is to consider two-dimensional version of the full coupled

theory of elasticity for solids with double porosity and to solve explicitly the Dirichlet and

Neumann BVPs of statics in the full coupled theory for an elastic plane with a circular
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Introduction

Many geothermal fields are naturally fractured systems. Classic double porosity
models the flow between matrix and fractures, under the hypothesis that petrophysical
properties are uniform in each medium. Fractures have the largest permeability and
drive the fluid toward the wells. The matrix, with smaller permeability, only acts as
a source of fluid for the fractures. Double porosity models can be classified as special
cases of this general theoretical concept, applicable to all class reservoirs. The matrix
blocks surrounded by fractures can have several geometries and any size. Fractures have
very little storage, but provide the high permeability conduits to drive the fluid toward
the wells. Matrix blocks have higher porosity and constitute the largest storage, but
have smaller permeability, acting only as a source of stationary fluid for the fractures.

A theory of consolidation with double porosity has been proposed by Aifantis.
This theory unifies a model proposed by Biot for the consolidation of deformable single
porosity media with a model proposed by Barenblatt for seepage in undeformable media
with two degrees of porosity. In a material with two degrees of porosity, there are two
pore systems, the primary and the secondary. For example in a fissured rock (i.e.a mass
of porous blocks separated from each other by an interconnected and continuously
distributed system of fissures) most of the porosity is provided by the pores of the
blocks or primary porosity, while most of permeability is provided by the fissures or
the secondary porosity.

The physical and mathematical foundations of the theory of double porosity were
considered in the papers [1]-[3]. In part I of a series of paper on the subject, R. K. Wil-
son and E. C. Aifantis [2] gave detailed physical interpretations of the phenomenological

1This paper dedicated to our teacher to the 85th birth anniversary of professor Mikheil
Basheleishvili
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coefficients appearing in the double porosity theory. They also solved several represen-
tative boundary value problems. In part II of this series, uniqueness and variational
principles were established by D. E. Beskos and E. C. Aifantis [3] for the equations of
double porosity, while in part III Khaled, Beskos and Aifantis [4] provided a related
finite element to consider the numerical solution of Aifantis’ equations of double poros-
ity (see [2],[3],[4] and the references cited therein). The basic results and the historical
information on the theory of porous media were summarized by Boer [5].

However, Aifantis’ quasi-static theory ignored the cross-coupling effect between the
volume change of the pores and fissures in the system. The cross-coupled terms were
included in the equations of conservation of mass for the pore and fissure fluid and in
Darcy’s law for solids with double porosity by several authors [5,9]. In [10] the full
coupled linear theory of elasticity for solids with double porosity is considered. Four
spatial cases of the dynamical equations are considered. The fundamental solutions
are constructed by means of elementary functions and the basic properties of the fun-
damental solutions are established. The fundamental solution of quasi-static equations
of the linear theory elasticity for double porosity solids is constructed and basic prop-
erties are established in [11]. In [12-15] the explicit solutions of the problems of porous
elastostatics for an elastic circle and for the plane with a circular hole are constructed,
the uniqueness theorems for regular solutions are proved and the numerical results are
given for boundary value problems. Explicit solutions of the BVPs of the theory of
consolidation with double porosity for the half-plane and half-space are considered in
[16,17].

The purpose of this paper is to consider two-dimensional version of the full coupled
theory of elasticity for solids with double porosity and to solve explicitly the Dirichlet
and Neumann BVPs of statics in the full coupled theory for an elastic plane with
a circular hole. The explicit solutions of these BVPs are represented by means of
absolutely and uniformly convergent series. The questions on the uniqueness of a
solutions of the problems are established.

Basic equations and boundary value problems

Let D be a plane with a circular hole. Let R be the radius of a circle with the
boundary S centered at point O(0, 0). Let us assume that the domain D is filled with
an isotropic material with double porosity.

The system of homogeneous equations in the full coupled linear equilibrium theory
of elasticity for materials with double porosity can be written as follows [6,10]

µ∆u+ (λ+ µ)graddivu− grad(β1p1 + β2p2) = 0, (1)

(k1∆− γ)p1 + (k12∆+ γ)p2 = 0,

(k21∆+ γ)p1 + (k2∆− γ)p2 = 0,
(2)

where u = u(u1, u2)
T is the displacement vector in a solid, p1 and p2 are the pore

and fissure fluid pressures respectively. β1 and β2 are the effective stress
parameters, γ > 0 is the internal transport coefficient and corresponds to fluid trans-
fer rate with respect to the intensity of flow between the pore and fissures, λ, µ, are
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constitutive coefficients, kj =
κj
µ′ , k12 =

κ12
µ′ , k21 =

κ21
µ′ . µ

′ is the fluid viscosity, κ1

and κ2 are the macroscopic intrinsic permeabilities associated with matrix and fissure
porosity, respectively, κ12 and κ21 are the cross-coupling permeabilities for fluid flow
at the interface between the matrix and fissure phases, ∆ is the 2D Laplace operator.
Throughout this article it is assumed that β2

1 + β2
2 > 0, and the superscript ”T”

denotes transposition.
Introduce the definition of a regular vector-function.
Definition. A vector-function U(x) = (u1, u2, p1, p2) defined in the domain D

is called regular if it has integrable continuous second derivatives in D, and U(x)
itself and its first order derivatives are continuously extendable at every point of the
boundary of D, i.e., U(x) ∈ C2(D)

∩
C1(D); x ∈ D, x = (x1, x2). Note that in

the domain D the vector U(x) additionally has to satisfy certain conditions at infinity.
Note that system (2) would be considered separately. Further we assume that pj is

known, when x ∈ D.
Supposing (

p1(x)
p2(x)

)
=

(
k2∆− γ − (k12∆+ γ)
−(k21∆+ γ) k1∆− γ

)
ψ(x),

where ψ = (ψ1, ψ2) is a four times differentiable vector function, we can write the
system (2) as

(∆ + λ21)∆ψj(x) = 0. (3)

With the help of (3) we find the solution of system (2) in the form

p1(x) = φ(x) + A1φ1(x), p2(x) = φ(x) + φ1(x), (4)

where

∆φ = 0, (∆ + λ21)φ1 = 0, A1 =
γ − k12λ

2
1

γ + k1λ21
= −k2 + k12

k1 + k21
,

λ1 = i

√
γk0

k1k2 − k12k21
= iλ0, i =

√
−1, k0 = k1 + k2 + k12 + k21;

k1 > 0, k2 > 0, γ > 0, k1k2 − k12k21 > 0, k0 > 0.

Let us substitute the expression β1p1 + β2p2 into (1) and let us search the
particular solution of the following nonhomogeneous equation

µ∆u+ (λ+ µ)graddivu = grad[(β1 + β2)φ+ (A1β1 + β2)φ1].

It is well-known that a general solution of the last equation is presented in the form

u(x) = v(x) + v0(x), (5)

where v(x) is a general solution of the equation

µ∆v+ (λ+ µ)graddivv = 0, (6)
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and v0(x) is a particular solution of the nonhomogeneous equation

v0(x) =
1

λ+ 2µ
grad

[
(β1 + β2)φ0 −

β1A1 + β2
λ21

φ1

]
, (7)

where φ0 is a biharmonic function ∆∆φ0 = 0 and ∆φ0 = φ, ∆φ = 0.
So it remains to study the problem of finding the functions pj(x), j = 1, 2.
We consider only the exterior boundary value problems. The interior one can be

treated quite similarly.
The basic BVPs in the full coupled linear equilibrium theory of elasticity for mate-

rials with double porosity are formulated as follows.
The Dirichlet BVP problem. Find a regular solution U(u, p1, p2) to systems

(1) and (2) for x ∈ D satisfying the following boundary conditions:

u = f(z), p1(z) = f3(z), p2(z) = f4(z), z ∈ S; (8)

Note that for the domain D the vector U(x) additionally has to satisfy the following
decay conditions at infinity

U(x) = o(1),
∂U(x)

∂xj
= O(|x|−2), |x|2 = x21 + x22, j = 1, 2, (9)

where o(.) and O(.) are Landau’s notion.
The Neumann BVP problem. Find a regular solution U(u, p1, p2) to systems

(1) and (2) for x ∈ D satisfying the following boundary conditions:

P

(
∂

∂x
,n

)
U(z) = f(z),

∂

∂n
p1(z) = f3(z),

∂

∂n
p2(z) = f4(z), z ∈ S, (10)

where f(z), and fj(z), j = 3, 4, are known functions, n(z) is the external unit

normal vector on S at z and P

(
∂

∂x
,n

)
U is the stress vector in the considered theory

P

(
∂

∂x
,n

)
U = T

(
∂

∂x
,n

)
u− n(β1p1 + β2p2), (11)

T

(
∂

∂x
,n

)
u is the stress vector in the classical theory of elasticity,

T

(
∂

∂x
,n

)
u(x) = µ

∂

∂n
u(x)+ λndivu(x)+ µ

2∑
i=1

ni(x)gradui(x).

Vector U(x) additionally has to satisfy the following decay conditions at infinity

U(x) = O(1),
∂U(x)

∂xj
= O(|x|−2), |x|2 = x21 + x22, j = 1, 2. (12)
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The uniqueness theorems

For a regular solutions of the Dirichlet and the Neumann BVPs in D Green’s
formulas: ∫

D

[E(u,u)− (β1p1 + β2p2)divu]dx = −
∫
S

uP(∂y,n)UdyS,

∫
D

{γ(p1 − p2)
2 + (k12 + k21)gradp1gradp2}dx

+

∫
D

{
k1(gradp1)

2 + k2(gradp2)
2
}
dx = −

∫
S

pP(1)(∂y,n)pdyS,

(13)

are valid, where

E(u,u) = (λ+ µ)(divu)2 + µ

(
∂u1
∂x1

− ∂u2
∂x2

)2

+ µ

(
∂u2
∂x1

+
∂u1
∂x2

)2

.

P(1)(∂x,n)p =

 k1 k12

k21 k2

 ∂p

∂n
, p = (p1, p2).

For positive definiteness of the potential energy the inequalities µ > 0, λ+ µ > 0
are necessary and sufficient.

Now let us prove the following theorems.

Theorem 1. The Dirichlet boundary value problem has at most one regular solution
in the infinite domain D.

Proof: Let the first BVP have in the domain D two regular solutions U(1) and U(2).
Denote U = U(1)−U(2). The vectors U(1) and U(2) in the domain D must satisfy the
condition (9); In this case formula (13) is valid and U(x) = C, x ∈ D, where C is a
constant vector. But U on the boundary satisfies the condition U = 0, which implies
that C = 0 and U(x) = 0, x ∈ D.

Theorem 2. The regular solution of the Neumann boundary value problem U =
const in the infinite domain D.

Proof: For the exterior second homogeneous boundary value problem the vector U
must satisfy condition at infinite (12). In this case, the formulas (13) are valid for a
regular U. Using these formulas, we obtain

u1 = c1 − εx2, u2 = c2 + εx1, p1 = p2 = const, x ∈ D,

where c1, c2, ε are constants. Bearing in mind (12), we have ε = 0, and

u1 = c1, u2 = c2, p1 = p2 = const, x ∈ D.
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Explicit solution of the Dirichlet BVP for a plane with circular hole

A solution of system (2) with boundary conditions p1(z) = f3(z), p2(z) =
f4(z), z ∈ S is sought in the form (5), where the functions φ and φ1 are unknown
in D. On the basis of boundary conditions we reformulate the problem in question as
follows

φ(z) = h(z), φ1(z) = h1(z), z ∈ S, (14)

where

h =
1

k0
[(k1 + k21)f3 + (k2 + k12)f4],

h1 =
1

k0
(k1 + k21)(f4 − f3).

(15)

Obviously the function φ is solution of the equation ∆φ = 0 and it is represented
in the form of the following series ([19], p. 281)

φ(x) =
∞∑
k=0

(
R

ρ

)k

(Yk · νk(ψ)), (16)

where
x(x1, x2) = (ρ, ψ), ρ2 = x21 + x22, Yk = (Ak, Bk),

νk = (cos kψ, sin kψ), Y0 = (A0, 0), A0 =
1

2π

2π∫
0

h(θ)dθ,

Ak =
1

π

2π∫
0

h(θ) cos kθdθ, Bk =
1

π

2π∫
0

h(θ) sin kθdθ.

The regular metaharmonic function φ1 in the domain D can be written as follows (
[18], p. 99)

φ1(x) =
∞∑
k=0

Kk(λ0ρ)(Zk · νk(ψ)), (17)

where Kk(λ0ρ) is a modified Hankel’s function of an imaginary argument, with the
index k.

Kk(λ0ρ) → 0, ρ → ∞; νk = (cos kψ, sin kψ); Zk = (Ck, Dk); Z0 = (C0, 0);
C0, Ck, Dk are the unknown quantities.

The function h1(z) in (15) can be represented in a Fourier series. Keeping in mind
(17) and boundary conditions (14) we obtain the values of Ck and Dk

C0 =
1

2πK0(λ0R)

2π∫
0

h1(θ)dθ, Ck =
1

πKk(λ0R)

2π∫
0

h1(θ) cos kθdθ, (18)
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Dk =
1

πKk(λ0R)

2π∫
0

h1(θ) sin kθdθ.

If we substitute the values of φ and φ1 into (4), we find the functions p1(x) and
p2(x) in D.

A solution v(x) = (v1, v2) of homogeneous equation (6) is sought in the form [14]

v1(x) =
∂

∂x1
[Φ1 + Φ2]−

∂Φ3

∂x2
,

v2(x) =
∂

∂x2
[Φ1 + Φ2] +

∂Φ3

∂x1
,

(19)

where Φ1, Φ2 and Φ3 are scalar functions,

∆Φ1 = 0, ∆∆Φ2 = 0, ∆∆Φ3 = 0,

(λ+ 2µ)
∂

∂x1
∆Φ2 − µ

∂

∂x2
∆Φ3 = 0,

(λ+ 2µ)
∂

∂x2
∆Φ2 + µ

∂

∂x1
∆Φ3 = 0.

(20)

Taking into account (5) and boundary conditions (8), we can write

v(z) = Ψ(z), (21)

where Ψ(z) = f(z) − v0(z) is the known vector; φ(z) and φ1(z) are defined by
equalities (14). On the basis of equation ∆φ0 = φ the function φ0 is represented in
the following form

φ0(x) =
R2

4

∞∑
k=2

1

1− k

(
R

ρ

)k−2

(Yk · νk(ψ)), (22)

where Yk is defined by (16).
In view of (20) we can represent the harmonic function Φ1, biharmonic functions

Φ2 and Φ3 in the form

Φ1 =
∞∑
k=0

(
R

ρ

)k

(Xk1 · νk(ψ)),

Φ2 =
∞∑
k=0

R2

(
R

ρ

)k−2

(Xk2 · νk(ψ)),

Φ3 =
R2(λ+ 2µ)

µ

∞∑
k=0

(
R

ρ

)k−2

(Xk2 · sk(ψ)),

(23)
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where Xki = (Xki1, Xki2), k = 1, 2 are the unknown two-component vectors,
νk = (cos kψ, sin kψ), sk = (− sin kψ, cos kψ). Using the formulas

∂

∂x1
= n1

∂

∂ρ
− n2

ρ

∂

∂ψ
,

∂

∂x2
= n2

∂

∂ρ
+
n1

ρ

∂

∂ψ

the boundary conditions (21) are rewritten in the form

vn(z) = Ψn(z), vs(z) = Ψs(z), z ∈ S, (24)

where vn and Ψn(z) are the normal components of the vectors v = (v1, v2) and Ψ =
(Ψ1,Ψ2) respectively; vs and Ψs(z) are the tangent components of the vectors
v = (v1, v2) and Ψ = (Ψ1,Ψ2) respectively. Substituting the equalities (19),(23) into
(24), we get

vn =
∂

∂ρ
(Φ1 + Φ2)−

1

ρ

∂

∂ψ
Φ3,

vs =
1

ρ

∂

∂ψ
(Φ1 + Φ2) +

∂

∂ρ
Φ3,

Ψn = n1Ψ1 + n2Ψ2, Ψs = −n2Ψ1 + n1Ψ2,

n = (n1, n2), s = (−n2, n1), n1 =
x1
ρ
, n2 =

x2
ρ
.

(25)

Let us expand the functions Ψn and Ψs in Fourier series, that Fourier coefficients
are γk and δk :

γ0 = (γ01, 0), γk = (γk1, γk2), δ0 = (δ01, 0), δk = (δk1, δk2),

γ01 =
1

π

2π∫
0

Ψn(θ)dθ, δ01 =
1

π

2π∫
0

Ψs(θ)dθ,

γk1 =
1

π

2π∫
0

Ψn(θ) cos kθdθ, δk1 =
1

π

2π∫
0

Ψs(θ) cos kθdθ,

γk2 =
1

π

2π∫
0

Ψs(θ) sin kθdθ, δk2 =
1

π

2π∫
0

Ψn(θ) sin kθdθ.

(26)

If we substitute (25) into (24), then obtained into (26), then passing to limit as ρ −→
R, for determining the unknown values we obtain the following system of algebraic
equations whose solution is written in the following form:

X01i =
γ0iR

2
, Xk1i =

R(γki + δki)

2k(λ+ 3µ)
[2µ+ (λ+ µ)k]− γkiR

k
,
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X02i =
δ0iRµ

2
, Xk2i =

(γki + δki)µ

2R(λ+ 3µ)
, i = 1, 2, k = 1, 2, ....

Thus the solution of the Dirichlet boundary problem is represented by the sum (5) in
which v(x) is defined by means of formula (19), v0(x) by formula (7), φ0(x) by formula
(22) and φ1(x) by formulas (17) and (18). It can be proved that if the functions f and
fj, j = 3, 4 satisfy the following conditions on S

f ∈ C3(S), fj ∈ C3(S), j = 3, 4,

then the resulting series are absolutely and uniformly convergent.

Explicit solution of the Neumann BVP for a plane with circular hole

We sought the solution of the Neumann BVP in the form (4), where the functions φ
and φ1 are unknown in the domain D. Taking into account formulas (4), the boundary
conditions can be rewritten as

∂φ(z)

∂R
= h(z),

∂φ1(z)

∂R
= h1(z), z ∈ S. (27)

h(z) and h1(z) are given by (15), where f3 =
∂p1
∂R

, f4 =
∂p2
∂R

.

Thus for the unknown harmonic function φ we obtain the Neumann problem, the
solution that is represented in the form of series ([19],p.282)

φ(x) = c1 −
∞∑
k=1

R

k

(
R

ρ

)k

(Yk · νk(ψ)), (28)

where c1 is an arbitrary constant; Yk = (Ak, Bk),

Ak =
1

π

2π∫
0

h(θ) cos kθdθ, Bk =
1

π

2π∫
0

h(θ) sin kθdθ.

The metaharmonic function φ1(x) in the domain D can be written as (17), where
Zk = (Ck, Dk); C0, Ck, Dk are the unknown quantities. Keeping in mind (15) and
boundary conditions (27), we obtain the values of Z0, Ck and Dk

C0 =
1

2πλ0K ′
0(λ0R)

2π∫
0

h1(θ)dθ, Ck =
1

πλ0K ′
k(λ0R)

2π∫
0

h1(θ) cos kθdθ, (29)

Dk =
1

πλ0K ′
k(λ0R)

2π∫
0

h1(θ) sin kθdθ,

where

K ′
k(ξ) =

∂Kk(ξ)

∂ξ
,

∂Kk(λ0ρ)

∂ρ
= λ0K

′
k(λ0ρ), K ′

k(λ0R) ̸= 0, k = 0, 1, 2, ....
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Taking into account (10) the boundary condition (9) for T

(
∂

∂z
,n

)
v(z) can be rewrit-

ten as

T

(
∂

∂z
,n

)
v(z)(z) = Ω(z), z ∈ S, (30)

where

Ω( z) = f(z) + n(z)[aφ1(z) + bφ(z)]−T

(
∂

∂z
,n

)
v0(z)

is the known vector, Ω = (Ω1,Ω2); φ is defined by (28) and φ1 - formulas (17) and
(18); a = β1 + β2, b = A1β1 + β2.

Let us rewrite the boundary conditions (30) in the form[
T

(
∂

∂z
,n

)
v(z)

]
n

= Ωn(z),

[
T

(
∂

∂z
,n

)
v(z)

]
s

= Ωs(z), (31)

where

[
T

(
∂

∂z
,n

)
v(z)

]
n

and Ωn(z) are the normal components of the vectors

T

(
∂

∂z
,n

)
v and Ω(z) respectively;

[
T

(
∂

∂z
,n

)
v(z)

]
s

and Ωs(z) are the tangent

components of the vectors T

(
∂

∂z
,n

)
v(z)) and Ω(z) respectively.

[
T

(
∂

∂z
,n

)
v(z)

]
n

= (λ+ µ)

[
∂vn(z)

∂ρ

]
ρ=R

+
λ

R

∂vs(z)

∂ψ
,

[
T

(
∂

∂z
,n

)
v(z)

]
s

= µ

[
∂vs(z)

∂ρ

]
ρ=R

+
µ

R

∂vn(z)

∂ψ
;

(32)

Ωn(z) = fn(z) + aφ1(z) + bφ(z)−
[
T

(
∂

∂z
,n

)
v0(z)

]
n

,

Ωs(z) = fs(z)−
[
T

(
∂

∂z
,n

)
v0(z)

]
s

, z ∈ S.

vn and vs are defined from (25), v0 is defined by means of formula (7), where function
φ0(x) is the solution of equation ∆φ0 = φ and represented in the form [14]

φ0(x) =
−R3

4

∞∑
k=2

1

k(1− k)

(R
r

)k−2

(Yk · νk(ψ)),

Yk are defined in (28); c1 is an arbitrary constant.
Let us expand the functions Ωn and Ωs in Fourier series, those Fourier coef-

ficients are γk = (γk1, γk2) and δk = (δk1, δk2). Taking into account the formulas
(25),(23) and (32), then passing to limit as ρ −→ R, for determining the unknown
values we obtain the following system of algebraic equations
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k[λ+ 2µ(k + 1)]Xk1i+{
(λ+ 2µ)(1− k)(2− k +

λ+ 2µ

µ
k)− λkR2

[
k +

λ+ 2µ

µ
(2− k)

]}
Xk2i = γkiR

2,

−k(1 + 2k)Xk1i +R2

[
k(3− 2k) +

λ+ 2µ

µ
(k2 − 3k + 2)

]
Xk2i =

δkiR
2

µ
,

i = 1, 2; k = 1, 2, ...,

where γki and δki are the Fourier coefficients of normal and tangential components of
the vector Ω(z) respectively.

We assume that the functions f and fj, (j = 3, 4) satisfies the following conditions
on S

f ∈ C2(S), fj ∈ C2(S), j = 3, 4.

Under these conditions the resulting series are absolutely and uniformly convergent.
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