Seminar of I. Vekua Institute
 of Applied Mathematics
 REPORTS, Vol. 40, 2014

ON THE EXISTENCE OF AN OPTIMAL ELEMENT IN QUASI-LINEAR NEUTRAL OPTIMAL PROBLEMS

Tadumadze T., Nachaoui A.

Abstract

For an optimal control problem involving neutral differential equation, whose right-hand side is linear with respect to prehistory of the phase velocity, existence theorems of optimal element are proved. Under element we imply the collection of delay parameters and initial functions, initial moment and vector, control and finally moment.

Keywords and phrases: Neutral differential equation, neutral optimal problem, optimal element, existence theorem.

AMS subject classification (2010): 49j25.

1. Formulation of main results

Let R_{x}^{n} be the n-dimensional vector space of points $x=\left(x^{1}, \ldots, x^{n}\right)^{T}$, where T is the sign of transposition, let $a<t_{01}<t_{02}<t_{11}<t_{12}<b, 0<\tau_{1}<\tau_{2}, 0<\sigma_{1}<\sigma_{2}$ be given numbers with $t_{11}-t_{02}>\max \left\{\tau_{2}, \sigma_{2}\right\}$; suppose that $O \subset R_{x}^{n}$ is a open set and $U \subset R_{u}^{r}$ is a compact set, the function $F(t, x, y, u)=\left(f^{0}(t, x, y, u), f^{1}(t, x, y, u), \ldots\right.$, $\left.f^{n}(t, x, y, u)\right)^{T}$ is continuous on the set $I \times O^{2} \times U$ and continuously differentiable with respect to x and y, where $I=[a, b]$; further, let Φ and Δ be sets of measurable initial functions $\varphi(t) \in K_{0}, t \in\left[\hat{\tau}, t_{02}\right]$ and $\varsigma(t) \in K_{1}, t \in\left[\hat{\tau}, t_{02}\right]$, respectively, where $\hat{\tau}=a-$ $\max \left\{\tau_{2}, \sigma_{2}\right\}, K_{0} \subset O$ is a compact set, $K_{1} \subset R_{x}^{n}$ is a convex and compact set ; let Ω be a set of measurable control functions $u(t) \in U, t \in I$ and let $g^{i}\left(t_{0}, t_{1}, \tau, \eta, x_{0}, x_{1}\right), i=\overline{0, l}$ be continuous scalar functions on the set $\left[t_{01}, t_{02}\right] \times\left[t_{11}, t_{12}\right] \times\left[\tau_{1}, \tau_{2}\right] \times\left[\sigma_{1}, \sigma_{2}\right] \times X_{0} \times O$, where $X_{0} \subset O$ is a compact set.

To each element $w=\left(t_{0}, t_{1}, \tau, \sigma, x_{0}, \varphi, \varsigma, u\right) \in W=\left[t_{01}, t_{02}\right] \times\left[t_{11}, t_{12}\right] \times\left[\tau_{1}, \tau_{2}\right] \times$ $\left[\sigma_{1}, \sigma_{2}\right] \times X_{0} \times \Phi \times \Delta \times \Omega$ we assign the quasi-linear neutral differential equation

$$
\begin{equation*}
\dot{x}(t)=A(t) \dot{x}(t-\sigma)+f(t, x(t), x(t-\tau), u(t)), t \in\left[t_{0}, t_{1}\right] \tag{1.1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
x(t)=\varphi(t), \dot{x}(t)=\varsigma(t), t \in\left[\hat{\tau}, t_{0}\right), x\left(t_{0}\right)=x_{0}, \tag{1.2}
\end{equation*}
$$

where $A(t)=\left(a_{j}^{i}(t)\right), i, j=\overline{1, n}, t \in I$ is a given $n \times n$-dimensional continuous matrix function, $f=\left(f^{1}, \ldots, f^{n}\right)^{T}$.

Remark 1.1. The symbol $\dot{x}(t)$ on the interval $\left[\hat{\tau}, t_{0}\right)$ is not connected with derivative of the function $\varphi(t)$.

Definition 1.1. Let $w=\left(t_{0}, t_{1}, \tau, \sigma, x_{0}, \varphi, \varsigma, u\right) \in W$. A function $x(t)=x(t ; w) \in$ $O, t \in\left[\hat{\tau}, t_{1}\right]$, is called a solution corresponding to the element w, if it satisfies condition (1.2) and is absolutely continuous on the interval $\left[t_{0}, t_{1}\right]$ and satisfies equation (1.1) almost everywhere (a.e.) on $\left[t_{0}, t_{1}\right]$.

Definition 1.2. An element $w=\left(t_{0}, t_{1}, \tau, \sigma, x_{0}, \varphi, \varsigma, u\right) \in W$ is said to be admissible if there exists the corresponding solution $x(t)=x(t ; w)$ satisfying the condition

$$
\begin{equation*}
g\left(t_{0}, t_{1}, \tau, \sigma, x_{0}, x\left(t_{1}\right)\right)=0 \tag{1.3}
\end{equation*}
$$

where $g=\left(g^{1}, \ldots, g^{l}\right)$.
We denote the set of admissible elements by W_{0}. Now we consider the functional

$$
\begin{gathered}
J(w)=g^{0}\left(t_{0}, t_{1}, \tau, \sigma, x_{0}, x\left(t_{1}\right)\right)+ \\
\int_{t_{0}}^{t_{1}}\left[a_{0}(t) \dot{x}(t-\sigma)+f^{0}(t, x(t), x(t-\tau), u(t))\right] d t, w \in W_{0}
\end{gathered}
$$

where $x(t)=x(t ; w)$, and $a_{0}(t)=\left(a_{0}^{1}(t), \ldots, a_{0}^{n}(t)\right), t \in I$ is a given continuous function.
Definition 1.3. An element $w_{0}=\left(t_{00}, t_{10}, \tau_{0}, \sigma_{0}, x_{00}, \varphi_{0}, \varsigma_{0}, u_{0}\right) \in W_{0}$ is said to be optimal if

$$
\begin{equation*}
J\left(w_{0}\right)=\inf _{w \in W_{0}} J(w) \tag{1.4}
\end{equation*}
$$

The problem (1.1)-(1.4) is called the quasi-linear neutral optimal problem.
Theorem 1.1. There exists an optimal element w_{0} if the following conditions hold:
1.1. $W_{0} \neq \varnothing$;
1.2. There exists a compact set $K_{2} \subset O$ such that for an arbitrary $w \in W_{0}$

$$
x(t ; w) \in K_{2}, t \in\left[\hat{\tau}, t_{1}\right] ;
$$

1.3. The sets

$$
P(t, x)=\left\{F(t, x, y, u):(y, u) \in K_{0} \times U\right\},(t, x) \in I \times O
$$

and

$$
P_{1}(t, x, y)=\{F(t, x, y, u): u \in U\},(t, x, y) \in I \times O^{2}
$$

are convex.
Remark 1.2. Let K_{0} and U be convex sets, and

$$
F(t, x, y, u)=B(t, x) y+C(t, x) u
$$

Then the condition 1.3 of Theorem 1.1 holds.
Theorem 1.2. There exists an optimal element w_{0} if the conditions 1.1 and 1.2 of Theorem 1.1 hold, moreover the following conditions are fulfilled:
1.4. The function $f(t, x, y, u)$ has a form

$$
f(t, x, y, u)=D(t, x) y+E(t, x) u
$$

1.5. The sets K_{0} and U are convex and for each fixed $(t, x) \in I \times O$ the function $f^{0}(t, x, y, u)$ is convex in $(y, u) \in K_{0} \times U$.

The proof of existence of optimal delay parameters, initial functions and initial moment is the essential novelty in this work. Theorems of existence for optimal control problems involving various functional differential equations with fixed delay, initial function and moment are given in [1-5].

2. Auxiliary assertions

To each element $\mu=\left(t_{0}, \tau, \sigma, x_{0}, \varphi, \varsigma, u\right) \in \Pi=\left[t_{01}, t_{02}\right] \times\left[\tau_{1}, \tau_{2}\right] \times\left[\sigma_{1}, \sigma_{2}\right] \times O \times$ $\Phi \times \Delta \times \Omega$ we will set in correspondence the functional differential equation

$$
\begin{equation*}
\dot{q}(t)=A(t) h\left(t_{0}, \varsigma, \dot{q}\right)(t-\sigma)+f\left(t, q(t), h\left(t_{0}, \varphi, q\right)(t-\tau), u(t)\right) \tag{2.1}
\end{equation*}
$$

with the initial condition

$$
\begin{equation*}
q\left(t_{0}\right)=x_{0}, \tag{2.2}
\end{equation*}
$$

where the operator $h\left(t_{0}, \varphi, q\right)(t)$ is defined by the formula

$$
h\left(t_{0}, \varphi, q\right)(t)=\left\{\begin{array}{l}
\varphi(t), t \in\left[\hat{\tau}, t_{0}\right), \tag{2.3}\\
q(t), t \in\left[t_{0}, b\right] .
\end{array}\right.
$$

Definition 2.1. Let $\mu=\left(t_{0}, \tau, \sigma, x_{0}, \varphi, \varsigma, u\right) \in \Pi$. A function $q(t)=q(t ; \mu) \in$ $O, t \in\left[r_{1}, r_{2}\right]$, where $r_{1} \in\left[t_{01}, t_{02}\right], r_{2} \in\left[t_{11}, t_{12}\right]$, is called a solution corresponding to the element μ and defined on $\left[r_{1}, r_{2}\right]$, if $t_{0} \in\left[r_{1}, r_{2}\right]$, and it satisfies condition (2.2) and is absolutely continuous on the interval $\left[r_{1}, r_{2}\right]$ and satisfies equation (2.1) a.e. on [r_{1}, r_{2}].

Let $K_{i} \subset O, i=3,4$ be compact sets and K_{4} contains a certain neighborhood of the set K_{3}.

Theorem 2.1. Let $q_{i}(t) \in K_{3}, i=1,2, \ldots$, be a solution corresponding to the element $\mu_{i}=\left(t_{0 i}, \tau_{i}, \sigma_{i}, x_{0 i}, \varphi_{i}, \varsigma_{i}, u_{i}\right) \in \Pi, i=1,2, \ldots$, respectively, defined on the interval $\left[t_{0 i}, t_{1 i}\right]$, where $t_{1 i} \in\left[t_{11}, t_{12}\right]$. Moreover,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} t_{0 i}=t_{00}, \lim _{i \rightarrow \infty} \sigma_{i}=\sigma_{0}, \lim _{i \rightarrow \infty} t_{1 i}=t_{10} . \tag{2.4}
\end{equation*}
$$

Then there exist numbers $\delta>0$ and $M>0$ such that for a sufficiently large i_{0} the solution $\psi_{i}(t)$ corresponding to the element $\mu_{i}, i \geq i_{0}$, respectively, is defined on the interval $\left[t_{00}-\delta, t_{10}+\delta\right] \subset I$. Moreover,

$$
\psi_{i}(t) \in K_{4},\left|\dot{\psi}_{i}(t)\right| \leq M, t \in\left[t_{00}-\delta, t_{10}+\delta\right]
$$

and

$$
\psi_{i}(t)=q_{i}(t), t \in\left[t_{0 i}, t_{1 i}\right] \subset\left[t_{00}-\delta, t_{10}+\delta\right] .
$$

Proof. Let $\varepsilon>0$ be so small that a closed ε-neighborhood of the set $K_{3}: K_{3}(\varepsilon)=$ $\left\{x \in O: \exists \hat{x} \in K_{3},|x-\hat{x}| \leq \varepsilon\right\}$ is contained $\operatorname{int} K_{4}$. There exists a compact set $Q \subset R_{x}^{n} \times R_{y}^{n}$

$$
K_{3}(\varepsilon) \times\left[K_{0} \cup K_{3}(\varepsilon)\right] \subset Q \subset K_{4} \times\left[K_{0} \cup K_{4}\right]
$$

and a continuously differentiable function $\chi: R_{x}^{n} \times R_{y}^{n} \rightarrow[0,1]$ such that

$$
\chi(x, y)=\left\{\begin{array}{l}
1,(x, y) \in Q, \tag{2.5}\\
0,(x, y) \notin K_{4} \times\left[K_{0} \cup K_{4}\right]
\end{array}\right.
$$

(see [6]). For each $i=1,2, \ldots$ the differential equation

$$
\dot{\psi}(t)=A(t) h\left(t_{0 i}, \varsigma_{i}, \dot{\psi}\right)\left(t-\sigma_{i}\right)+\phi\left(t, \psi(t), h\left(t_{0 i}, \varphi_{i}, \psi\right)\left(t-\tau_{i}\right), u_{i}(t)\right),
$$

where

$$
\phi(t, x, y, u)=\chi(x, y) f(t, x, y, u),
$$

with the initial condition

$$
\psi\left(t_{0 i}\right)=x_{0 i},
$$

has the solution $\psi_{i}(t)$ defined on the interval I (see proof of Theorem 4.1,[7]). Since

$$
\left(q_{i}(t), h\left(t_{0 i}, \varphi_{i}, q_{i}\right)\left(t-\tau_{i}\right)\right) \in K_{3} \times\left[K_{0} \cup K_{3}\right] \subset Q, t \in\left[t_{0 i}, t_{1 i}\right],
$$

(see (2.3)), therefore

$$
\chi\left(q_{i}(t), h\left(t_{0 i}, \varphi_{i}, q_{i}\right)\left(t-\tau_{i}\right)\right)=1, t \in\left[t_{0 i}, t_{1 i}\right],
$$

(see (2.5)),i.e.

$$
\begin{gathered}
\phi\left(t, q_{i}(t), h\left(t_{0 i}, \varphi_{i}, q_{i}\right)\left(t-\tau_{i}\right), u_{i}(t)\right)=f\left(t, q_{i}(t), h\left(t_{0 i}, \varphi_{i}, q_{i}\right)\left(t-\tau_{i}\right), u_{i}(t)\right), \\
t \in\left[t_{0 i}, t_{1 i}\right] .
\end{gathered}
$$

By the uniqueness

$$
\begin{equation*}
\psi_{i}(t)=q_{i}(t), t \in\left[t_{0 i}, t_{1 i}\right] . \tag{2.6}
\end{equation*}
$$

There exists a number $M>0$ such that

$$
\begin{equation*}
\left|\dot{\psi}_{i}(t)\right| \leq M, t \in I, i=1,2, \ldots \tag{2.7}
\end{equation*}
$$

Indeed, first of all we note that

$$
\begin{gathered}
\left|\phi\left(t, \psi_{i}(t), h\left(t_{0 i}, \varphi_{i}, \psi_{i}\right)\left(t-\tau_{i}\right), u_{i}(t)\right)\right| \leq \sup \left\{|\phi(t, x, y, u)|: t \in I, x \in K_{4},\right. \\
\left.y \in K_{4} \cup K_{0}, u \in U\right\}:=N_{1}, i=1,2, \ldots
\end{gathered}
$$

It is not difficult to see that for sufficiently large i_{0} we have

$$
\left[\frac{b-t_{0 i}}{\sigma_{i}}\right]=\left[\frac{b-t_{00}}{\sigma_{0}}\right]:=d, i \geq i_{0}
$$

where $[\alpha]$ means the integer part of a number α, i.e.

$$
t_{0 i}+d \sigma_{i} \leq b<t_{0 i}+(d+1) \sigma_{i} .
$$

If $t \in\left[a, t_{0 i}+\sigma_{i}\right)$ then

$$
\begin{gathered}
\left|\dot{\psi}_{i}(t)\right|=\left|A(t) \varsigma_{i}\left(t-\sigma_{i}\right)+\phi\left(t, \psi_{i}(t), h\left(t_{0 i}, \varphi_{i}, \psi_{i}\right)\left(t-\tau_{i}\right), u_{i}(t)\right)\right| \\
\leq\|A\| N_{2}+N_{1}:=M_{1},
\end{gathered}
$$

where

$$
\|A\|=\sup \{|A(t)|: t \in I\}, N_{2}=\sup \left\{|\xi|: \xi \in K_{1}\right\}
$$

Let $t \in\left[t_{0 i}+\sigma_{i}, t_{0 i}+2 \sigma_{i}\right)$ then

$$
\left|\dot{\psi}_{i}(t)\right| \leq\|A\|\left\|\dot{\psi}_{i}\left(t-\sigma_{i}\right) \mid+N_{1} \leq\right\| A \| M_{1}+N_{1}:=M_{2}
$$

Continuing this process we obtain

$$
\left|\dot{\psi}_{i}(t)\right| \leq\|A\| M_{j-1}+N_{1}:=M_{j}, t \in\left[t_{0 i}+(j-1) \sigma_{i}, t_{0 i}+j \sigma_{i}\right), j=3, \ldots, d
$$

Moreover, if $t_{0 i}+d \sigma_{i}<b$ then we have

$$
\left|\dot{\psi}_{i}(t)\right| \leq M_{d+1}, t \in\left[t_{0 i}+d \sigma_{i}, b\right] .
$$

It is clear that for $M=\max \left\{M_{1}, \ldots, M_{d+1}\right\}$ the condition (2.7) is fulfilled.
Further, there exists a number $\delta_{0}>0$ such that for an arbitrary $i=1,2 \ldots,\left[t_{0 i}-\right.$ $\left.\delta_{0}, t_{1 i}+\delta_{0}\right] \subset I$ and the following conditions hold

$$
\begin{gathered}
\left|\psi_{i}\left(t_{0 i}\right)-\psi_{i}(t)\right| \leq \int_{t}^{t_{0 i}}\left[\left|A(s) h\left(t_{0 i}, \varsigma_{i}, \dot{\psi}_{i}\right)\left(s-\sigma_{i}\right)\right|\right. \\
+\left|\phi\left(s, \psi_{i}(s), h\left(t_{0 i}, \varphi_{i}, \psi_{i}\right)\left(s-\tau_{i}\right), u_{i}(s)\right)\right| d s \leq \varepsilon, t \in\left[t_{0 i}-\delta_{0}, t_{0 i}\right] \\
\left|\psi_{i}(t)-\psi_{i}\left(t_{1 i}\right)\right| \leq \int_{t_{1 i}}^{t}\left[\left|A(s) h\left(t_{0 i}, \xi_{i}, \dot{\psi}_{i}\right)\left(s-\sigma_{i}\right)\right|\right. \\
\left.+\left|\phi\left(s, \psi_{i}(s), h\left(t_{0 i}, \varphi_{i}, \psi_{i}\right)\left(s-\tau_{i}\right), u_{i}(s)\right)\right|\right] d s \leq \varepsilon, t \in\left[t_{1 i}, t_{1 i}+\delta_{0}\right] .
\end{gathered}
$$

These inequalities, taking into account $\psi_{i}\left(t_{0 i}\right) \in K_{3}$ and $\psi_{i}\left(t_{1 i}\right) \in K_{3}$, (see (2.6)), yield

$$
\left(\psi_{i}(t), h\left(t_{0 i}, \varphi_{i}, \psi_{i}\right)\left(t-\tau_{i}\right)\right) \in K_{3}(\varepsilon) \times\left[K_{0} \cup K_{3}(\varepsilon)\right], t \in\left[t_{0 i}-\delta_{0}, t_{1 i}+\delta_{0}\right]
$$

i.e.

$$
\chi\left(\psi_{i}(t), h\left(t_{0 i}, \varphi_{i}, \psi_{i}\right)\left(t-\tau_{i}\right)\right)=1, t \in\left[t_{0 i}-\delta_{0}, t_{1 i}+\delta_{0}\right], i=1,2, \ldots
$$

Thus, $\psi_{i}(t)$ satisfies equation (2.1) and the conditions $\psi_{i}\left(t_{0 i}\right)=x_{0 i}, \psi_{i}(t) \in K_{4}, t \in$ [$t_{0 i}-\delta_{0}, t_{1 i}+\delta_{0}$], i.e. $\psi_{i}(t)$ is the solution corresponding to the element μ_{i} and defined on the interval $\left[t_{0 i}-\delta_{0}, t_{1 i}+\delta_{0}\right] \subset I$. Let $\delta \in\left(0, \delta_{0}\right)$, according to (2.4) for a sufficiently large i_{0} we have

$$
\left[t_{0 i}-\delta_{0}, t_{1 i}+\delta_{0}\right] \supset\left[t_{00}-\delta, t_{10}+\delta\right] \supset\left[t_{0 i}, t_{1 i}\right], i \geq i_{0}
$$

Consequently, $\psi_{i}(t), i \geq i_{0}$ solutions are defined on the interval $\left[t_{00}-\delta, t_{10}+\delta\right]$ and satisfy the conditions: $\psi_{i}(t) \in K_{4},\left|\dot{\psi}_{i}(t)\right| \leq M, t \in\left[t_{00}-\delta, t_{10}+\delta\right] ; \psi_{i}(t)=q_{i}(t), t \in\left[t_{0 i}, t_{1 i}\right]$, (see (2.6),(2.7)).

Theorem 2.2.([8]). Let $p(t, u) \in R_{p}^{m}$ be a continuous function on the set $I \times U$ and let the set

$$
P(t)=\{p(t, u): u \in U\}
$$

be convex and

$$
p_{i}(\cdot) \in L_{1}(I), p_{i}(t) \in P(t) \text { a.e. on } I, i=1,2, \ldots .
$$

Moreover,

$$
\lim _{i \rightarrow \infty} p_{i}(t)=p(t) \text { weakly on } I .
$$

Then

$$
p(t) \in P(t) \text { a.e. on } I
$$

and there exists a measurable function $u(t) \in U, t \in I$ such that

$$
p(t, u(t))=p(t) \text { a.e. on } I .
$$

3. Proof of Theorem 1.1

Let

$$
w_{i}=\left(t_{0 i}, t_{1 i}, \tau_{i}, \sigma_{i}, x_{0 i}, \varphi_{i}, \varsigma_{i}, u_{i}\right) \in W_{0}, i=1,2, \ldots
$$

be a minimizing sequence,i.e.

$$
\lim _{i \rightarrow \infty} J\left(w_{i}\right)=\hat{J}=\inf _{w \in W_{0}} J(w) .
$$

Without loss of generality, we assume that

$$
\lim _{i \rightarrow \infty} t_{0 i}=t_{00}, \lim _{i \rightarrow \infty} t_{1 i}=t_{10}, \lim _{i \rightarrow \infty} \tau_{i}=\tau_{0}, \lim _{i \rightarrow \infty} \sigma_{i}=\sigma_{0}, \lim _{i \rightarrow \infty} x_{0 i}=x_{00}
$$

The set $\Delta \subset L_{1}\left(\left[\hat{\tau}, t_{02}\right]\right)$ is weakly compact (see Theorem 2.2), therefore we assume that

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \varsigma_{i}(t)=\varsigma_{0}(t) \text {, weakly in } t \in\left[\hat{\tau}, t_{02}\right] . \tag{3.1}
\end{equation*}
$$

Introduce the following notation:

$$
\begin{gathered}
x_{i}^{0}(t)=\int_{t_{0 i}}^{t}\left[a_{0}(s) \dot{x}_{i}\left(s-\sigma_{i}\right)+f^{0}\left(s, x_{i}(s), x_{i}\left(s-\tau_{i}\right), u_{i}(s)\right)\right] d s, \\
x_{i}(t)=x\left(t ; w_{i}\right), \rho_{i}(t)=\left(x_{i}^{0}(t), x_{i}(t)\right)^{T}, t \in\left[t_{0 i}, t_{1 i}\right] .
\end{gathered}
$$

Obviously,

$$
\left\{\begin{array}{l}
\dot{\rho}_{i}(t)=\hat{A}(t) \dot{x}_{i}\left(t-\sigma_{i}\right)+F\left(t, x_{i}(t), x_{i}\left(t-\tau_{i}\right), u_{i}(t)\right), t \in\left[t_{0 i}, t_{1 i}\right], \\
x_{i}(t)=\varphi_{i}(t), t \in\left[\hat{\tau}, t_{0 i}\right), \rho_{i}\left(t_{0 i}\right)=\left(0, x_{0 i}\right)^{T}, \\
\dot{x}_{i}(t)=\varsigma_{i}(t), t \in\left[\hat{\tau}, t_{0 i}\right),
\end{array}\right.
$$

where $\hat{A}(t)=\left(a_{0}(t) A(t)\right)^{T}$. It is clear that

$$
J\left(w_{i}\right)=g^{0}\left(t_{0 i}, t_{1 i}, \tau_{i}, \sigma_{i}, x_{0 i}, x_{i}\left(t_{1 i}\right)\right)+x_{i}^{0}\left(t_{1 i}\right) .
$$

To each element $\mu=\left(t_{0}, \tau, \sigma, x_{0}, \varphi, \varsigma, u\right) \in \Pi$ we will set in correspondence the functional differential equation

$$
\dot{z}(t)=\hat{A}(t) h\left(t_{0}, \varsigma, \dot{v}\right)(t-\sigma)+F\left(t, v(t), h\left(t_{0}, \varphi, v\right)(t-\tau), u(t)\right),
$$

with the initial condition

$$
z\left(t_{0}\right)=z_{0}=\left(0, x_{0}\right)^{T}
$$

where $z(t)=\left(v^{0}(t), v(t)\right)^{T} \in R_{z}^{1+n}$.
It is easy to see that

$$
\left\{\begin{array}{l}
\dot{\rho}_{i}(t)=\hat{A}(t) h\left(t_{0 i}, \varsigma_{i}, \dot{x}_{i}\right)\left(t-\sigma_{i}\right)+F\left(t, x_{i}(t), h\left(t_{0 i}, \varphi_{i}, x_{i}\right)\left(t-\tau_{i}\right), u_{i}(t)\right), t \in\left[t_{0 i}, t_{1 i}\right], \\
\rho_{i}\left(t_{0 i}\right)=\left(0, x_{0 i}\right)^{T}
\end{array}\right.
$$

(see (2.3)). Thus, $\rho_{i}(t)$ is the solution corresponding to $\mu_{i}=\left(t_{0 i}, \tau_{i}, \sigma_{i}, x_{0 i}, \varphi_{i}, \varsigma_{i}, u_{i}\right) \in \Pi$ and defined on the interval $\left[t_{0 i}, t_{1 i}\right]$. Since $x_{i}(t) \in K_{2}$, therefore in a similar way (see the proof of Theorem 2.1) we prove that $\left|\dot{x}_{i}(t)\right| \leq N_{3}, t \in\left[t_{0 i}, t_{1 i}\right], i=1,2, \ldots, N_{3}>0$. Further, there exists a compact $H_{1} \subset H=\left\{z=\left(v^{0}, v\right)^{T}: v^{0} \in R_{v^{0}}^{1}, v \in O\right\} \subset R_{z}^{1+n}$ such that $\rho_{i}(t) \in H_{1}, t \in\left[t_{0 i}, t_{1 i}\right]$.

Let $H_{2} \subset H$ be a compact set containing a certain neighborhood of the set H_{1}. By Theorem 2.1 there exists a number $\delta>0$ such that for a sufficiently large i_{0} the solutions $z_{i}(t)=z\left(t ; \mu_{i}\right), i \geq i_{0}$ are defined on the interval $\left[t_{00}-\delta, t_{10}+\delta\right] \subset I$ and the following conditions hold

$$
\left\{\begin{array}{l}
z_{i}(t) \in H_{2},\left|\dot{z}_{i}(t)\right| \leq M, t \in\left[t_{00}-\delta, t_{10}+\delta\right] \tag{3.2}\\
z_{i}(t)=\rho_{i}(t)=\left(x_{i}^{0}(t), x_{i}(t)\right)^{T}, t \in\left[t_{0 i}, t_{1 i}\right], i \geq i_{0}
\end{array}\right.
$$

Thus, there exist numbers $N_{4}>0$ and $N_{5}>0$ such hat

$$
\left\{\begin{array}{l}
\left|F\left(t, v_{i}(t), h\left(t_{0 i}, \varphi_{i}, v_{i}\right)\left(t-\sigma_{i}\right), u_{i}(t)\right)\right| \leq N_{5}, \tag{3.3}\\
\left|h\left(t_{0 i}, \varsigma_{i}, \dot{v}_{i}\right)\left(t-\eta_{i}\right)\right| \leq N_{4}, t \in\left[t_{00}-\delta, t_{10}+\delta\right], i \geq i_{0}
\end{array}\right.
$$

The sequence $z_{i}(t)=\left(v_{i}^{0}(t), v_{i}(t)\right)^{T}, t \in\left[t_{00}-\delta, t_{10}+\delta\right], i \geq i_{0}$ is uniformly bounded and equicontinuous. By the Arzela-Ascoli lemma, from this sequence we can extract a subsequence, which will again be denoted by $z_{i}(t), i \geq i_{0}$, that

$$
\lim _{i \rightarrow \infty} z_{i}(t)=z_{0}(t)=\left(v_{0}^{0}(t), v_{0}(t)\right)^{T} \text { uniformly in }\left[t_{00}-\delta, t_{10}+\delta\right] .
$$

Further, from the sequence $\dot{z}_{i}(t), i \geq i_{0}$, we can extract a subsequence, which will again be denoted by $\dot{z}_{i}(t), i \geq i_{0}$, that

$$
\lim _{i \rightarrow \infty} \dot{z}_{i}(t)=\gamma(t) \text { weakly in }\left[t_{00}-\delta, t_{10}+\delta\right],
$$

(see (3.2)). Obviously,

$$
\begin{gathered}
z_{0}(t)=\lim _{i \rightarrow \infty} z_{i}(t)=\lim _{i \rightarrow \infty}\left[z_{i}\left(t_{00}-\delta\right)+\int_{t_{00}-\delta}^{t} \dot{z}_{i}(s) d s\right] \\
=z_{0}\left(t_{00}-\delta\right)+\int_{t_{00}-\delta}^{t} \gamma(s) d s
\end{gathered}
$$

Thus, $\dot{z}_{0}(t)=\gamma(t)$ i.e.

$$
\lim _{i \rightarrow \infty} \dot{z}_{i}(t)=\dot{z}_{0}(t) \text { weakly in }\left[t_{00}-\delta, t_{10}+\delta\right] .
$$

Further, we have

$$
\begin{gathered}
z_{i}(t)=z_{0 i}+\int_{t_{0 i}}^{t}\left[\hat{A}(s) h\left(t_{0 i}, \varsigma_{i}, \dot{v}_{i}\right)\left(s-\sigma_{i}\right)+F\left(s, v_{i}(s), h\left(t_{0 i}, \varphi_{i}, v_{i}\right)\left(s-\tau_{i}\right), u_{i}(s)\right)\right] d s \\
=z_{0 i}+\vartheta_{1 i}(t)+\vartheta_{2 i}+\theta_{1 i}(t)+\theta_{2 i}, t \in\left[t_{00}, t_{10}\right], i \geq i_{0}
\end{gathered}
$$

where

$$
\begin{gathered}
z_{0 i}=\left(0, x_{0 i}\right)^{T}, \vartheta_{1 i}(t)=\int_{t_{00}}^{t} \hat{A}(s) h\left(t_{0 i}, \varsigma_{i}, \dot{v}_{i}\right)\left(s-\sigma_{i}\right) d s \\
\theta_{1 i}(t)=\int_{t_{00}}^{t} F\left(s, v_{i}(s), h\left(t_{0 i}, \varphi_{i}, v_{i}\right)\left(s-\tau_{i}\right), u_{i}(s)\right) d s \\
\vartheta_{2 i}=\int_{t_{0 i}}^{t_{00}} \hat{A}(s) h\left(t_{0 i}, s_{i}, \dot{v}_{i}\right)\left(s-\sigma_{i}\right) d s \\
\theta_{2 i}=\int_{t_{0 i}}^{t_{00}} F\left(s, v_{i}(s), h\left(t_{0 i}, \varphi_{i}, v_{i}\right)\left(s-\tau_{i}\right), u_{i}(s)\right) d s
\end{gathered}
$$

Obviously, $\vartheta_{2 i} \rightarrow 0$ and $\theta_{2 i} \rightarrow 0$ as $i \rightarrow \infty$.
First of all we transform the expression $\vartheta_{1 i}(t)$ for $t \in\left[t_{00}, t_{10}\right]$. For this purpose, we consider two cases. Let $t \in\left[t_{00}, t_{00}+\sigma_{0}\right]$, we have

$$
\vartheta_{1 i}(t)=\vartheta_{1 i}^{(1)}(t)+\vartheta_{1 i}^{(2)}(t),
$$

where

$$
\begin{gathered}
\vartheta_{1 i}^{(1)}(t)=\int_{t_{00}}^{t} \hat{A}(s) h\left(t_{00}, \varsigma_{i}, \dot{v}_{i}\right)\left(s-\sigma_{i}\right) d s, \vartheta_{1 i}^{(2)}(t)=\int_{t_{00}}^{t} \vartheta_{1 i}^{(3)}(s) d s, \\
\vartheta_{1 i}^{(3)}(s)=\hat{A}(s)\left[h\left(t_{0 i}, \varsigma_{i}, \dot{v}_{i}\right)\left(s-\sigma_{i}\right)-h\left(t_{00}, \varsigma_{i}, \dot{v}_{i}\right)\left(s-\sigma_{i}\right)\right]
\end{gathered}
$$

It is clear that

$$
\begin{equation*}
\left|\vartheta_{1 i}^{(2)}(t)\right| \leq \int_{t_{00}}^{t_{10}}\left|\vartheta_{1 i}^{(3)}(s)\right| d s, t \in\left[t_{00}, t_{10}\right] \tag{3.4}
\end{equation*}
$$

Suppose that $t_{0 i}+\sigma_{i}>t_{00}$ for $i \geq i_{0}$. According to (2.3)

$$
\vartheta_{1 i}^{(3)}(s)=0, s \in\left[t_{00}, t_{0 i}^{(1)}\right) \cup\left(t_{0 i}^{(2)}, t_{1 i}\right],
$$

where

$$
t_{0 i}^{(1)}=\min \left\{t_{0 i}+\sigma_{i}, t_{00}+\sigma_{i}\right\}, t_{0 i}^{(2)}=\max \left\{t_{0 i}+\sigma_{i}, t_{00}+\sigma_{i}\right\}
$$

Since

$$
\lim _{i \rightarrow \infty}\left(t_{0 i}^{(2)}-t_{0 i}^{(1)}\right)=0
$$

therefore,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \vartheta_{1 i}^{(2)}(t)=0, \text { uniformly in } t \in\left[t_{00}, t_{10}\right] \tag{3.5}
\end{equation*}
$$

(see (3.3)). For $\vartheta_{1 i}^{(1)}(t), t \in\left[t_{00}, t_{00}+\sigma_{0}\right]$ we get

$$
\vartheta_{1 i}^{(1)}(t)=\int_{t_{00}-\sigma_{i}}^{t-\sigma_{i}} \hat{A}\left(s+\sigma_{i}\right) h\left(t_{00}, \varsigma_{i}, \dot{v}_{i}\right)(s) d s=\vartheta_{1 i}^{(4)}(t)+\vartheta_{1 i}^{(5)}(t),
$$

where

$$
\begin{aligned}
& \vartheta_{1 i}^{(4)}(t)=\int_{t_{00}-\sigma_{0}}^{t-\sigma_{0}} \hat{A}\left(s+\sigma_{0}\right) \varsigma_{i}(s) d s, \vartheta_{1 i}^{(5)}(t)=\int_{t_{00}-\sigma_{0}}^{t-\sigma_{0}}\left[\hat{A}\left(s+\sigma_{i}\right)-\hat{A}\left(s+\sigma_{0}\right)\right] \varsigma_{i}(s) d s \\
& \quad+\int_{t_{00}-\sigma_{i}}^{t_{00}-\sigma_{0}} \hat{A}\left(s+\sigma_{i}\right) h\left(t_{00}, \varsigma_{i}, \dot{v}_{i}\right)(s) d s+\int_{t-\sigma_{0}}^{t-\sigma_{i}} \hat{A}\left(s+\sigma_{i}\right) h\left(t_{00}, \varsigma_{i}, \dot{v}_{i}\right)(s) d s
\end{aligned}
$$

Obviously,

$$
\lim _{i \rightarrow \infty} \vartheta_{1 i}^{(5)}(t)=0 \text { uniformly in } t \in\left[t_{00}, t_{00}+\sigma_{0}\right]
$$

and

$$
\begin{gather*}
\lim _{i \rightarrow \infty} \vartheta_{1 i}^{(1)}(t)=\lim _{i \rightarrow \infty} \vartheta_{1 i}^{(4)}(t)=\int_{t_{00}-\sigma_{0}}^{t-\sigma_{0}} \hat{A}\left(s+\sigma_{0}\right) \varsigma_{0}(s) d s \\
=\int_{t_{00}}^{t} \hat{A}(s) \varsigma_{0}\left(s-\sigma_{0}\right) d s, t \in\left[t_{00}, t_{00}+\sigma_{0}\right] \tag{3.6}
\end{gather*}
$$

(see (3.1)).
Let $t \in\left[t_{00}+\sigma_{0}, t_{10}\right]$ then

$$
\vartheta_{1 i}^{(1)}(t)=\vartheta_{1 i}^{(1)}\left(t_{00}+\sigma_{0}\right)+\vartheta_{1 i}^{(6)}(t),
$$

where

$$
\vartheta_{1 i}^{(6)}(t)=\int_{t_{00}+\sigma_{0}}^{t} \hat{A}(s) h\left(t_{0 i}, \varsigma_{i}, \dot{v}_{i}\right)\left(s-\sigma_{i}\right) d s .
$$

Further,

$$
\vartheta_{1 i}^{(6)}(t)=\int_{t_{00}+\sigma_{0}}^{t} \hat{A}(s) h\left(t_{00}, \varsigma_{i}, \dot{v}_{i}\right)\left(s-\sigma_{i}\right) d s+\int_{t_{00}+\sigma_{0}}^{t} \vartheta_{1 i}^{(3)}(s) d s=\vartheta_{1 i}^{(7)}(t)+\vartheta_{1 i}^{(8)}(t) .
$$

It is clear that

$$
\lim _{i \rightarrow \infty} \vartheta_{1 i}^{(8)}(t)=0 \text { uniformly in } t \in\left[t_{00}+\sigma_{0}, t_{10}\right]
$$

(see (3.5)). For $\vartheta_{1 i}^{(7)}(t), t \in\left[t_{00}+\sigma_{0}, t_{10}\right]$ we have

$$
\vartheta_{1 i}^{(7)}(t)=\int_{t_{00}+\sigma_{0}-\sigma_{i}}^{t-\sigma_{i}} \hat{A}\left(s+\sigma_{i}\right) h\left(t_{00}, \varsigma_{i}, \dot{v}_{i}\right)(s) d s=\vartheta_{1 i}^{(9)}(t)+\vartheta_{1 i}^{(10)}(t)
$$

where

$$
\begin{aligned}
& \vartheta_{1 i}^{(9)}(t)=\int_{t_{00}}^{t-\sigma_{0}} \hat{A}\left(s+\sigma_{0}\right) \dot{v}_{i}(s) d s, \vartheta_{1 i}^{(10)}(t)=\int_{t_{00}+\sigma_{0}-\sigma_{i}}^{t_{00}} \hat{A}\left(s+\sigma_{i}\right) h\left(t_{00}, \varsigma_{i}, \dot{v}_{i}\right)(s) d s \\
& \quad+\int_{t-\sigma_{0}}^{t-\sigma_{i}} \hat{A}\left(s+\sigma_{i}\right) h\left(t_{00}, \varsigma_{i}, \dot{v}_{i}\right)(s) d s+\int_{t_{00}}^{t-\sigma_{0}}\left[\hat{A}\left(s+\sigma_{i}\right)-\hat{A}\left(s+\sigma_{0}\right)\right] \dot{v}_{i}(s) d s
\end{aligned}
$$

Obviously,

$$
\lim _{i \rightarrow \infty} \vartheta_{1 i}^{(10)}(t)=0 \text { uniformly in } t \in\left[t_{00}+\sigma_{0}, t_{10}\right]
$$

and

$$
\begin{gather*}
\lim _{i \rightarrow \infty} \vartheta_{1 i}^{(1)}(t)=\lim _{i \rightarrow \infty} \vartheta_{1 i}^{(1)}\left(t_{00}+\sigma_{0}\right)+\lim _{i \rightarrow \infty} \vartheta_{1 i}^{(6)}(t)=\int_{t_{00}}^{t_{00}+\sigma_{0}} \hat{A}(t) s_{0}\left(t-\sigma_{0}\right) d t \\
+\lim _{i \rightarrow \infty} \vartheta_{1 i}^{(9)}(t)=\int_{t_{00}}^{t_{00}+\sigma_{0}} \hat{A}(t) \varsigma_{0}\left(t-\sigma_{0}\right) d t+\int_{t_{00}}^{t-\sigma_{0}} \hat{A}\left(s+\sigma_{0}\right) \dot{v}_{0}(s) d s \\
=\int_{t_{00}}^{t_{00}+\sigma_{0}} \hat{A}(t) s_{0}\left(t-\sigma_{0}\right) d t+\int_{t_{00}+\sigma_{0}}^{t} \hat{A}(s) \dot{v}_{0}\left(s-\sigma_{0}\right) d s \tag{3.7}
\end{gather*}
$$

Now we transform the expression $\theta_{1 i}(t)$ for $t \in\left[t_{00}, t_{10}\right]$. We consider two cases again .
Let $t \in\left[t_{00}, t_{00}+\tau_{0}\right]$, we have

$$
\begin{gathered}
\theta_{1 i}(t)=\theta_{1 i}^{(1)}(t)+\theta_{1 i}^{(2)}(t) \\
\theta_{1 i}^{(1)}(t)=\int_{t_{00}}^{t} F\left(s, v_{i}(s), h\left(t_{00}, \varphi_{i}, v_{i}\right)\left(s-\tau_{i}\right), u_{i}(s)\right) d s, \theta_{1 i}^{(2)}(t)=\int_{t_{00}}^{t} \theta_{1 i}^{(3)}(s) d s \\
\theta_{1 i}^{(3)}(s)=F\left(s, v_{i}(s), h\left(t_{0 i}, \varphi_{i}, v_{i}\right)\left(s-\tau_{i}\right), u_{i}(s)\right)-F\left(s, v_{i}(s), h\left(t_{00}, \varphi_{i}, v_{i}\right)\left(s-\tau_{i}\right), u_{i}(s)\right) .
\end{gathered}
$$

It is clear that

$$
\begin{equation*}
\left|\theta_{1 i}^{(2)}(t)\right| \leq \int_{t_{00}}^{t_{10}}\left|\theta_{1 i}^{(3)}(s)\right| d s, t \in\left[t_{00}, t_{10}\right] \tag{3.8}
\end{equation*}
$$

Suppose that $t_{0 i}+\tau_{i}>t_{00}$ for $i \geq i_{0}$. According to (2.3)

$$
\theta_{1 i}^{(3)}(s)=0, s \in\left[t_{00}, t_{0 i}^{(3)}\right) \cup\left(t_{0 i}^{(4)}, t_{1 i}\right]
$$

where

$$
t_{1 i}^{(3)}=\min \left\{t_{0 i}+\tau_{i}, t_{00}+\tau_{i}\right\}, t_{1 i}^{(4)}=\max \left\{t_{0 i}+\tau_{i}, t_{00}+\tau_{i}\right\} .
$$

Since

$$
\lim _{i \rightarrow \infty}\left(t_{0 i}^{(4)}-t_{0 i}^{(3)}\right)=0
$$

therefore,

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \theta_{1 i}^{(2)}(t)=0 \text { uniformly in } t \in\left[t_{00}, t_{10}\right], \tag{3.9}
\end{equation*}
$$

(see (3.3)). For $\theta_{1 i}^{(1)}(t), t \in\left[t_{00}, t_{00}+\tau_{0}\right]$, we have

$$
\begin{gathered}
\theta_{1 i}^{(1)}(t)=\int_{t_{00}-\tau_{i}}^{t-\tau_{i}} F\left(s+\tau_{i}, v_{i}\left(s+\tau_{i}\right), h\left(t_{00}, \varphi_{i}, v_{i}\right)(s), u_{i}\left(s+\tau_{i}\right)\right) d s \\
=\theta_{1 i}^{(4)}(t)+\theta_{1 i}^{(5)}(t), i \geq i_{0}
\end{gathered}
$$

where

$$
\begin{gathered}
\theta_{1 i}^{(4)}(t)=\int_{t_{00}-\tau_{0}}^{t-\tau_{0}} F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), \varphi_{i}(s), u_{i}\left(s+\tau_{i}\right)\right) d s, \\
\theta_{1 i}^{(5)}(t)= \\
\quad \int_{t_{00}-\tau_{i}}^{t-\tau_{i}} F\left(s+\tau_{i}, v_{i}\left(s+\tau_{i}\right), h\left(t_{00}, \varphi_{i}, v_{i}\right)(s), u_{i}\left(s+\tau_{i}\right)\right) d s \\
\quad-\int_{t_{00}-\tau_{0}}^{t-\tau_{0}} F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), \varphi_{i}(s), u_{i}\left(s+\tau_{i}\right)\right) d s
\end{gathered}
$$

For $t \in\left[t_{00}, t_{00}+\tau_{0}\right]$ we obtain

$$
\begin{gathered}
\theta_{1 i}^{(5)}(t)=\int_{t_{00}-\tau_{i}}^{t_{00}-\tau_{0}} F\left(s+\tau_{i}, v_{i}\left(s+\tau_{i}\right), h\left(t_{00}, \varphi_{i}, v_{i}\right)(s), u_{i}\left(s+\tau_{i}\right)\right) d s \\
+\int_{t_{00}-\tau_{0}}^{t-\tau_{0}}\left[F\left(s+\tau_{i}, v_{i}\left(s+\tau_{i}\right), \varphi_{i}(s), u_{i}\left(s+\tau_{i}\right)\right)-F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), \varphi_{i}(s), u_{i}\left(s+\tau_{i}\right)\right)\right] d s \\
\quad+\int_{t-\tau_{0}}^{t-\tau_{i}} F\left(s+\tau_{i}, v_{i}\left(s+\tau_{i}\right), h\left(t_{00}, \varphi_{i}, v_{i}\right)(s), u_{i}\left(s+\tau_{i}\right)\right) d s .
\end{gathered}
$$

Suppose that $\left|\tau_{i}-\tau_{0}\right| \leq \delta$ as $i \geq i_{0}$. According to condition (3.3) and

$$
\lim _{i \rightarrow \infty} F\left(s+\tau_{i}, v_{i}\left(s+\tau_{i}\right), y, u\right)=F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), y, u\right)
$$

uniformly in $(s, y, u) \in\left[t_{00}-\tau_{0}, t_{00}\right] \times K_{0} \times U$, we have

$$
\lim _{i \rightarrow \infty} \theta_{1 i}^{(5)}(t)=0 \text { uniformly in } t \in\left[t_{00}, t_{00}+\tau_{0}\right] .
$$

From the sequence $F_{i}(s)=F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), \varphi_{i}(s), u_{i}\left(s+\tau_{i}\right)\right), i \geq i_{0}, t \in\left[t_{00}-\tau_{0}, t_{00}\right]$, we extract a subsequence, which will again be denoted by $F_{i}(s), i \geq i_{0}$, such that

$$
\lim _{i \rightarrow \infty} F_{i}(s)=F_{0}(s) \text { weakly in the space } L_{1}\left(\left[t_{00}-\tau_{0}, t_{00}\right]\right)
$$

(see (3.3)). It is not difficult to see that

$$
F_{i}(s) \in P\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right)\right), s \in\left[t_{00}-\tau_{0}, t_{00}\right] .
$$

By Theorem 2.2

$$
F_{0}(s) \in P\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right)\right) \text { a.e. } s \in\left[t_{00}-\tau_{0}, t_{00}\right]
$$

and on the interval $\left[t_{00}-\tau_{0}, t_{00}\right]$ there exist measurable functions $\varphi_{01}(s) \in K_{0}, u_{01}(s) \in$ U such that

$$
F_{0}(s)=F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), \varphi_{01}(s), u_{01}(s)\right) \text { a.e. } s \in\left[t_{00}-\tau_{0}, t_{00}\right] .
$$

Thus,

$$
\begin{gather*}
\lim _{i \rightarrow \infty} \theta_{1 i}^{(1)}(t)=\lim _{i \rightarrow \infty} \theta_{1 i}^{(4)}(t)=\int_{t_{00}-\tau_{0}}^{t-\tau_{0}} F_{0}(s) d s \\
=\int_{t_{00}-\tau_{0}}^{t-\tau_{0}} F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), \varphi_{01}(s), u_{01}(s)\right) d s \\
=\int_{t_{00}}^{t} F\left(s, v_{0}(s), \varphi_{01}\left(s-\tau_{0}\right), u_{01}\left(s-\tau_{0}\right)\right) d s, t \in\left[t_{00}, t_{00}+\tau_{0}\right] . \tag{3.10}
\end{gather*}
$$

Let $t \in\left[t_{00}+\tau_{0}, t_{10}\right]$ then

$$
\theta_{1 i}^{(1)}(t)=\theta_{1 i}^{(1)}\left(t_{00}+\tau_{0}\right)+\theta_{1 i}^{(6)}(t), t \in\left[t_{00}+\tau_{0}, t_{10}\right],
$$

where

$$
\theta_{1 i}^{(6)}(t)=\int_{t_{00}+\tau_{0}}^{t} F\left(s, v_{i}(s), h\left(t_{0 i}, \varphi_{i}, v_{i}\right)\left(s-\tau_{i}\right), u_{i}(s)\right) d s
$$

Further,

$$
\theta_{1 i}^{(6)}(t)=\theta_{1 i}^{(7)}(t)+\theta_{1 i}^{(8)}(t)
$$

$$
\left.\theta_{1 i}^{(7)}(t)=\int_{t_{00}+\tau_{0}}^{t} F\left(s, v_{i}(s), h\left(t_{00}, \varphi_{i}, v_{i}\right)\right)\left(s-\tau_{i}\right), u_{i}(s)\right) d s, \theta_{1 i}^{(8)}(t)=\int_{t_{00}+\tau_{0}}^{t} \theta_{1 i}^{(3)}(s) d s
$$

It is clear that

$$
\lim _{i \rightarrow \infty} \theta_{1 i}^{(8)}(t)=0 \text { uniformly in } t \in\left[t_{00}+\tau_{0}, t_{10}\right]
$$

(see (3.8),(3.9)). For the expression $\theta_{1 i}^{(7)}(t), t \in\left[t_{00}+\tau_{0}, t_{10}\right]$ we have

$$
\begin{gathered}
\theta_{1 i}^{(7)}(t)=\int_{t_{00}+\tau_{0}-\tau_{i}}^{t-\tau_{i}} F\left(s+\tau_{i}, v_{i}\left(s+\tau_{i}\right), h\left(t_{00}, \varphi_{i}, v_{i}\right)(s), u_{i}\left(s+\tau_{i}\right)\right) d s \\
=\theta_{1 i}^{(9)}(t)+\theta_{1 i}^{(10)}(t), i \geq i_{0}
\end{gathered}
$$

where

$$
\begin{gathered}
\theta_{1 i}^{(9)}(t)=\int_{t_{00}}^{t-\tau_{0}} F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), v_{0}(s), u_{i}\left(s+\tau_{i}\right)\right) d s \\
\theta_{1 i}^{(10)}(t)=\int_{t_{00}+\tau_{0}-\tau_{i}}^{t-\tau_{i}} F\left(s+\tau_{i}, v_{i}\left(s+\tau_{i}\right), h\left(t_{00}, \varphi_{i}, v_{i}\right)(s), u_{i}\left(s+\tau_{i}\right)\right) d s \\
\quad-\int_{t_{00}}^{t-\tau_{0}} F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), v_{0}(s), u_{i}\left(s+\tau_{i}\right)\right) d s
\end{gathered}
$$

Clearly, for $t \in\left[t_{00}+\tau_{0}, t_{10}\right]$ we get

$$
\theta_{1 i}^{(10)}(t)=\int_{t_{00}+\tau_{0}-\tau_{i}}^{t_{00}} F\left(s+\tau_{i}, v_{i}\left(s+\tau_{i}\right), h\left(t_{00}, \varphi_{i}, v_{i}\right)(s), u_{i}\left(s+\tau_{i}\right)\right) d s
$$

$$
\begin{aligned}
+\int_{t_{00}}^{t-\tau_{0}}[F(s+ & \left.\left.\tau_{i}, v_{i}\left(s+\tau_{i}\right), v_{i}(s), u_{i}\left(s+\tau_{i}\right)\right)-F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), v_{0}(s), u_{i}\left(s+\tau_{i}\right)\right)\right] d s \\
& +\int_{t-\tau_{0}}^{t-\tau_{i}} F\left(s+\tau_{i}, v_{i}\left(s+\tau_{i}\right), h\left(t_{00}, \varphi_{i}, v_{i}\right)(s), u_{i}\left(s+\tau_{i}\right)\right) d s
\end{aligned}
$$

According to condition (3.3) and

$$
\lim _{i \rightarrow \infty} F\left(s+\tau_{i}, v_{i}\left(s+\tau_{i}\right), v_{i}(s), u\right)=F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), v_{0}(s), u\right)
$$

uniformly in $(s, u) \in\left[t_{00}, t_{10}-\tau_{0}\right] \times U$, we obtain

$$
\theta_{1 i}^{(10)}(t)=0 \text { uniformly in } t \in\left[t_{00}+\tau_{0}, t_{10}\right] .
$$

From the sequence $F_{i}(s)=F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), v_{0}(s), u_{i}\left(s+\tau_{i}\right)\right), i \geq i_{0}, t \in\left[t_{00}, t_{10}-\tau_{0}\right]$, we extract a subsequence, which will again be denoted by $F_{i}(s), i \geq i_{0}$, such that

$$
\lim _{i \rightarrow \infty} F_{i}(s)=F_{0}(s) \text { weakly in the space } L_{1}\left(\left[t_{00}, t_{10}-\tau_{0}\right]\right)
$$

It is not difficult to see that

$$
F_{i}(s) \in P_{1}\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), v_{0}(s)\right), s \in\left[t_{00}, t_{10}-\tau_{0}\right] .
$$

By Theorem 2.2

$$
F_{0}(s) \in P_{1}\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), v_{0}(s)\right), \text { a.e. } s \in\left[t_{00}, t_{10}-\tau_{0}\right]
$$

and on the interval $\left[t_{00}, t_{10}-\tau_{0}\right]$ there exists a measurable function $u_{02}(s) \in U$ such that

$$
F_{0}(s)=F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), v_{0}(s), u_{02}(s)\right) \text { a.e. } s \in\left[t_{00}, t_{10}-\tau_{0}\right] .
$$

Thus,

$$
\begin{align*}
& \lim _{i \rightarrow \infty} \theta_{1 i}^{(1)}(t)= \lim _{i \rightarrow \infty} \theta_{1 i}^{(1)}\left(t_{00}+\tau_{0}\right)+\lim _{i \rightarrow \infty} \theta_{1 i}^{(9)}(t)=\int_{t_{00}}^{t_{00}+\tau_{0}} F\left(s, v_{0}(s), \varphi_{01}\left(s-\tau_{0}\right), u_{01}\left(s-\tau_{0}\right)\right) d s \\
&+\int_{t_{00}}^{t-\tau_{0}} F_{0}(s) d s=\int_{t_{00}}^{t_{00}+\tau_{0}} F\left(s, v_{0}(s), \varphi_{01}\left(s-\tau_{0}\right), u_{01}\left(s-\tau_{0}\right)\right) d s \\
&+\int_{t_{00}}^{t-\tau_{0}} F\left(s+\tau_{0}, v_{0}\left(s+\tau_{0}\right), v_{0}(s), u_{02}(s)\right) d s=\int_{t_{00}}^{t_{00}+\tau_{0}} F\left(s, v_{0}(s), \varphi_{01}\left(s-\tau_{0}\right), u_{01}\left(s-\tau_{0}\right)\right) d s \\
&+\int_{t_{00}+\tau_{0}}^{t} F\left(s, v_{0}(s), v_{0}\left(s-\tau_{0}\right), u_{02}\left(s-\tau_{0}\right)\right) d s, t \in\left[t_{00}+\tau_{0}, t_{10}\right] \tag{3.11}
\end{align*}
$$

(see (3.10)).
Introduce the following notation

$$
\varphi_{0}(s)=\left\{\begin{array}{l}
\hat{\varphi}, s \in\left[\hat{\tau}, t_{00}-\tau_{0}\right) \cup\left(t_{00}, t_{02}\right] \\
\varphi_{01}(s), s \in\left[t_{00}-\tau_{0}, t_{00}\right]
\end{array}\right.
$$

$$
u_{0}(s)=\left\{\begin{array}{l}
\hat{u}, s \in\left[a, t_{00}\right) \cup\left(t_{10}, b\right] \\
u_{01}\left(s-\tau_{0}\right), s \in\left[t_{00}, t_{00}+\tau_{0}\right] \\
u_{02}\left(s-\tau_{0}\right), s \in\left(t_{00}+\tau_{0}, t_{10}\right]
\end{array}\right.
$$

where $\hat{\varphi} \in K_{0}$ and $\hat{u} \in U$ are fixed points;

$$
\begin{gathered}
x_{0}(t)=\left\{\begin{array}{l}
\varphi_{0}(t), t \in\left[\hat{\tau}, t_{00}\right), \\
v_{0}(t), t \in\left[t_{00}, t_{10}\right] ;
\end{array}\right. \\
\dot{x}_{0}(t)=\varsigma_{0}(t), t \in\left[\hat{\tau}, t_{00}\right),
\end{gathered}
$$

(see Remark 1.1),

$$
x_{0}^{0}(t)=v^{0}(t), t \in\left[t_{00}, t_{10}\right] .
$$

Clearly, $w_{0}=\left(t_{00}, t_{10}, \tau_{0}, \sigma_{0}, x_{00}, \varphi_{0}, \varsigma_{0}, u_{0}\right) \in W$. Taking into account (3.6),(3.7),(3.10) and (3.11) we obtain

$$
\begin{gathered}
x_{0}^{0}(t)=\int_{t_{00}}^{t}\left[a_{0}(s) \dot{x}_{0}\left(s-\sigma_{0}\right)+f^{0}\left(s, x_{0}(s), x_{0}\left(s-\tau_{0}\right), u_{0}(s)\right)\right] d s, t \in\left[t_{00}, t_{10}\right] \\
x_{0}(t)=x_{00}+\int_{t_{00}}^{t}\left[A(s) \dot{x}_{0}\left(s-\sigma_{0}\right)+f\left(s, x_{0}(s), x_{0}\left(s-\tau_{0}\right), u_{0}(s)\right)\right] d s, t \in\left[t_{00}, t_{10}\right] .
\end{gathered}
$$

It is not difficult to see that

$$
\begin{gathered}
\left.\lim _{i \rightarrow \infty}\left(x_{i}^{0}\left(t_{1 i}\right), x_{i}\left(t_{1 i}\right)\right)^{T}=\lim _{i \rightarrow \infty} \rho_{i}\left(t_{1 i}\right)=\lim _{i \rightarrow \infty} z_{i}\left(t_{1 i}\right)\right) \\
=\lim _{i \rightarrow \infty}\left[z_{i}\left(t_{1 i}\right)-z_{i}\left(t_{10}\right)\right]+\lim _{i \rightarrow \infty}\left[z_{i}\left(t_{10}\right)-z_{0}\left(t_{10}\right)\right]+z_{0}\left(t_{10}\right)=z_{0}\left(t_{10}\right) \\
=\left(v^{0}\left(t_{10}\right), v_{0}\left(t_{10}\right)\right)^{T}=\left(x_{0}^{0}\left(t_{10}\right), x_{0}\left(t_{10}\right)\right)^{T} \in H,
\end{gathered}
$$

(see (3.2)). Consequently,

$$
0=\lim _{i \rightarrow \infty} g\left(t_{0 i}, t_{1 i}, \tau_{i}, \sigma_{i}, x_{0 i}, x_{i}\left(t_{1 i}\right)\right)=g\left(t_{00}, t_{10}, \tau_{0}, \sigma_{0}, x_{00}, x_{0}\left(t_{10}\right)\right),
$$

i.e. the element w_{0} is admissible and $x_{0}(t)=x\left(t ; w_{0}\right), t \in\left[\hat{\tau}, t_{10}\right]$.

Further, we have

$$
\begin{gathered}
\hat{J}=\lim _{i \rightarrow \infty}\left[g^{0}\left(t_{0 i}, t_{1 i}, \tau_{i}, \sigma_{i}, x_{0 i}, x_{i}\left(t_{1 i}\right)\right)+x_{i}^{0}\left(t_{1 i}\right)\right]=g\left(t_{00}, t_{10}, \tau_{0}, \sigma_{0}, x_{00}, x_{0}\left(t_{10}\right)\right) \\
+x_{0}^{0}\left(t_{10}\right)=J\left(w_{0}\right)
\end{gathered}
$$

Thus, w_{0} is an optimal element.

4. Proof of Theorem 1.2

First of all we note that the sets $\Delta \subset L_{1}\left(\left[\hat{\tau}, t_{02}\right]\right)$ and $\Omega \subset L_{1}(I)$ are weakly compacts (see Theorem 2.2). Let

$$
w_{i}=\left(t_{0 i}, t_{1 i}, \tau_{i}, \sigma_{i}, x_{0 i}, \varphi_{i}, \varsigma_{i}, u_{i}\right) \in W_{0}, i=1,2, \ldots
$$

be a minimizing sequence,i.e.

$$
\lim _{i \rightarrow \infty} J\left(w_{i}\right)=\hat{J}=\inf _{w \in W_{0}} J(w)
$$

Without loss of generality, we assume that

$$
\begin{align*}
\lim _{i \rightarrow \infty} t_{0 i}=t_{00}, & \lim _{i \rightarrow \infty} t_{1 i}=t_{10}, \lim _{i \rightarrow \infty} \tau_{i}=\tau_{0}, \lim _{i \rightarrow \infty} \sigma_{i}=\sigma_{0}, \lim _{i \rightarrow \infty} x_{0 i}=x_{00}, \\
& \left\{\begin{array}{l}
\lim _{i \rightarrow \infty} \varphi_{i}(t)=\varphi_{0}(t), \text { weakly on }\left[\hat{\tau}, t_{02}\right], \\
\lim _{i \rightarrow \infty} s_{i}(t)=s_{0}(t), \text { weakly on }\left[\hat{\tau}, t_{02}\right], \\
\lim _{i \rightarrow \infty} u_{i}(t)=u_{0}(t) \text { weakly on } I .
\end{array}\right. \tag{4.1}
\end{align*}
$$

(see (3.1)).
To each element $\mu=\left(t_{0}, \tau, \sigma, x_{0}, \varphi, \varsigma, u\right) \in \Pi$ we will set in correspondence the functional differential equation

$$
\dot{\zeta}(t)=A(t) h\left(t_{0}, \varsigma, \dot{\zeta}\right)(t-\sigma)+C(t, \zeta(t)) h\left(t_{0}, \varphi, \zeta\right)(t-\tau)+D(t, \zeta(t)) u(t)
$$

with the initial condition

$$
\zeta\left(t_{0}\right)=x_{0}
$$

It is easy to see that for $x_{i}(t)=x\left(t ; w_{i}\right)$ we have

$$
\left\{\begin{array}{l}
\dot{x}_{i}(t)=A(t) h\left(t_{0}, \varsigma, \dot{x}_{i}\right)\left(t-\sigma_{i}\right)+C\left(t, x_{i}(t)\right) h\left(t_{0 i}, \varphi_{i}, x_{i}\right)\left(t-\tau_{i}\right)+ \\
D\left(t, x_{i}(t)\right) u_{i}(t), t \in\left[t_{0 i}, t_{1 i}\right] \\
x_{i}\left(t_{0 i}\right)=x_{0 i} .
\end{array}\right.
$$

Thus, $x_{i}(t) \in K_{2}$ is the solution corresponding to $\mu_{i}=\left(t_{0 i}, \tau_{i}, \sigma_{i}, x_{0 i}, \varphi_{i}, \varsigma_{i}, u_{i}\right)$ and defined on the interval $\left[t_{0 i}, t_{1 i}\right]$. Let $\hat{K}_{2} \subset O$ be a compact set containing a certain neighborhood of the set K_{2}. By Theorem 2.1 there exists a number $\delta>0$ such that for a sufficiently large i_{0} the solutions $\zeta_{i}(t)=\zeta\left(t ; \mu_{i}\right), i \geq i_{0}$ are defined on the interval $\left[t_{00}-\delta, t_{10}+\delta\right] \subset I$ and

$$
\zeta_{i}(t) \in \hat{K}_{2}, t \in\left[t_{00}-\delta, t_{10}+\delta\right], \zeta_{i}(t)=x_{i}(t), t \in\left[t_{0 i}, t_{1 i}\right], i \geq i_{0} .
$$

After this (see the proof of Theorem 1.1) we prove in the standard way that

$$
\lim _{i \rightarrow \infty} \zeta_{i}(t)=\zeta_{0}(t) \text { uniformly in } t \in\left[t_{00}-\delta, t_{10}+\delta\right],
$$

and

$$
\lim _{i \rightarrow \infty} \dot{\zeta}_{i}(t)=\dot{\zeta}_{0}(t) \text { weakly on } t \in\left[t_{00}-\delta, t_{10}+\delta\right]
$$

where $\zeta_{0}(t)$ is the solution corresponding to the element $\mu_{0}=\left(t_{00}, \tau_{0}, \sigma_{0}\right.$, $\left.x_{00}, \varphi_{0}, \varsigma_{0}, u_{0}\right)$, defined on the interval $\left[t_{00}-\delta, t_{10}+\delta\right]$ and satisfying the condition $\zeta_{0}\left(t_{00}\right)=x_{00}$. Moreover,

$$
\lim _{i \rightarrow \infty} x_{i}\left(t_{1 i}\right)=\lim _{i \rightarrow \infty} \zeta_{i}\left(t_{1 i}\right)=\lim _{i \rightarrow \infty}\left[\zeta_{i}\left(t_{1 i}\right)-\zeta_{i}\left(t_{10}\right)\right]
$$

$$
+\lim _{i \rightarrow \infty}\left[\zeta_{i}\left(t_{10}\right)-\zeta_{0}\left(t_{10}\right)\right]+\zeta_{0}\left(t_{10}\right)=\zeta_{0}\left(t_{10}\right),
$$

Hence,

$$
0=\lim _{i \rightarrow \infty} g\left(t_{0 i}, t_{1 i}, \tau_{i}, \sigma_{i}, x_{0 i}, x_{i}\left(t_{1 i}\right)\right)=g\left(t_{00}, t_{10}, \tau_{0}, \sigma_{0}, x_{00}, \zeta_{0}\left(t_{10}\right)\right)
$$

Introduce the following notation

$$
\begin{gather*}
x_{0}(t)=\left\{\begin{array}{l}
\varphi_{0}(t), t \in\left[\hat{\tau}, t_{00}\right), \\
\zeta_{0}(t), t \in\left[t_{00}, t_{10}\right]
\end{array}\right. \tag{4.2}\\
\dot{x}_{0}(t)=\varsigma_{0}(t), t \in\left[\hat{\tau}, t_{00}\right), \tag{4.3}
\end{gather*}
$$

(see Remark 1.1).
Clearly the function $x_{0}(t)$ is the solution corresponding to the element $w_{0}=$ $\left(t_{00}, t_{10}, \tau_{0}, \sigma_{0}, x_{00}, \varphi_{0}, \varsigma_{0}, u_{0}\right) \in W$ and satisfying the condition

$$
g\left(t_{00}, t_{10}, \tau_{0}, \sigma_{0}, x_{00}, x_{0}\left(t_{10}\right)\right)=0
$$

i.e. $w_{0} \in W_{0}$.

Now we prove optimality of the element w_{0}. We have,

$$
\begin{gathered}
\lim _{i \rightarrow \infty} g^{0}\left(t_{0 i}, t_{1 i}, \tau_{i}, \sigma_{i}, x_{0 i}, x_{i}\left(t_{1 i}\right)\right)=g^{0}\left(t_{00}, t_{10}, \tau_{0}, \sigma_{0}, x_{00}, x_{0}\left(t_{10}\right)\right), \\
\int_{t_{0 i}}^{t_{1 i}} a_{0}(t) \dot{x}_{i}\left(t-\sigma_{i}\right) d t=\int_{t_{0 i}}^{t_{1 i}} a_{0}(t) h\left(t_{1 i}, \xi_{i}, \dot{\zeta}_{i}\right)\left(t-\sigma_{i}\right) d t, \\
\int_{t_{0 i}}^{t_{1 i}} f^{0}\left(t, x_{i}(t), x_{i}\left(t-\tau_{i}\right), u_{i}(t)\right) d t=\int_{t_{0 i}}^{t_{1 i}} f^{0}\left(t, \zeta_{i}(t), h\left(t_{0 i}, \varphi_{i}, \zeta_{i}\right)\left(t-\tau_{i}\right), u_{i}(t)\right) d t .
\end{gathered}
$$

In a similar way (see proof of Theorem 1.1) it can be proved that

$$
\begin{gathered}
\int_{t_{0 i}}^{t_{1 i}} a_{0}(t) h\left(t_{1 i}, \varsigma_{i}, \dot{\zeta}_{i}\right)\left(t-\eta_{i}\right) d t=\varrho_{1 i}+\varrho_{2 i}+\varrho_{3 i} \\
\int_{t_{0 i}}^{t_{1 i}} f^{0}\left(t, \zeta_{i}(t), h\left(t_{0 i}, \varphi_{i}, \zeta_{i}\right)\left(t-\tau_{i}\right), u_{i}(t)\right) d t=\gamma_{1 i}+\gamma_{2 i}+\gamma_{3 i},
\end{gathered}
$$

where

$$
\begin{gathered}
\varrho_{1 i}=\int_{t_{00}-\sigma_{0}}^{t_{00}} a_{0}\left(t+\sigma_{0}\right) \xi_{i}(t) d t, \varrho_{2 i}=\int_{t_{00}}^{t_{10}-\sigma_{0}} a_{0}\left(t+\sigma_{0}\right) \dot{v}_{i}(t) d t \\
\gamma_{1 i}=\int_{t_{00}-\tau_{0}}^{t_{00}} f^{0}\left(t+\tau_{0}, \zeta_{0}\left(t+\tau_{0}\right), \varphi_{i}(t), u_{i}\left(t+\tau_{i}\right)\right) d t, \\
\gamma_{2 i}=\int_{t_{00}}^{t_{10}-\tau_{0}} f^{0}\left(t+\tau_{0}, \zeta_{0}\left(t+\tau_{0}\right), \zeta_{0}(t), u_{i}\left(t+\tau_{i}\right)\right) d t
\end{gathered}
$$

and

$$
\lim _{i \rightarrow \infty} \varrho_{3 i}=0, \lim _{i \rightarrow \infty} \gamma_{3 i}=0
$$

The functionals

$$
\int_{t_{00}-\tau_{0}}^{t_{00}} f^{0}\left(t+\tau_{0}, \zeta_{0}\left(t+\tau_{0}\right), \varphi(t), u(t)\right) d t,(\varphi, u) \in \Delta \times \Omega
$$

and

$$
\int_{t_{00}}^{t_{10}-\tau_{0}} f^{0}\left(t+\tau_{0}, \zeta_{0}\left(t+\tau_{0}\right), \zeta_{0}(t), u(t)\right) d t, u \in \Omega
$$

are lower semicontinuous (see [3]).
It is not difficult to see that, if

$$
\lim _{i \rightarrow \infty} u_{i}(t)=u_{0}(t) \text { weakly on } I
$$

then

$$
\lim _{i \rightarrow \infty} u_{i}\left(t+\tau_{i}\right)=u_{0}\left(t+\tau_{0}\right) \text { weakly on }\left[t_{00}-\tau_{0}, t_{10}-\tau_{0}\right],
$$

(see (4.1)). Using the latter and above given relations, we get

$$
\begin{gathered}
\hat{J}=\lim _{i \rightarrow \infty} J\left(w_{i}\right)=\lim _{i \rightarrow \infty}\left[g^{0}\left(t_{0 i}, t_{1 i}, \tau_{i}, \sigma_{i}, x_{0 i}, x_{i}\left(t_{1 i}\right)\right)+\varrho_{1 i}+\varrho_{2 i}+\varrho_{3 i}\right. \\
\left.+\gamma_{1 i}+\gamma_{2 i}+\gamma_{3 i}\right]=g^{0}\left(t_{00}, t_{10}, \tau_{0}, \sigma_{0}, x_{00}, x_{0}\left(t_{10}\right)\right)+\lim _{i \rightarrow \infty}\left[\varrho_{1 i}+\varrho_{2 i}\right] \\
+\lim _{i \rightarrow \infty}\left[\gamma_{1 i}+\gamma_{2 i}\right] \geq g^{0}\left(t_{00}, t_{10}, \tau_{0}, \sigma_{0}, x_{00}, x_{0}\left(t_{10}\right)\right)+\int_{t_{00}-\sigma_{0}}^{t_{00}} a_{0}\left(t+\sigma_{0}\right) \zeta_{0}(t) d t \\
+\int_{t_{00}}^{t_{10}-\sigma_{0}} a_{0}\left(t+\sigma_{0}\right) \dot{\zeta}_{0}(t) d t+\int_{t_{00}-\tau_{0}}^{t_{00}} f^{0}\left(t+\tau_{0}, \zeta_{0}\left(t+\tau_{0}\right), \varphi_{0}(t), u_{0}\left(t+\tau_{0}\right)\right) d t \\
+\int_{t_{00}}^{t_{10}-\tau_{0}} f^{0}\left(t+\tau_{0}, \zeta_{0}\left(t+\tau_{0}\right), \zeta_{0}(t), u_{0}\left(t+\tau_{0}\right)\right) d t=g^{0}\left(t_{00}, t_{10}, \tau_{0}, \sigma_{0}, x_{00}, x_{0}\left(t_{10}\right)\right) \\
+\int_{t_{00}}^{t_{10}}\left[a_{0}(t) \dot{x}_{0}\left(t-\sigma_{0}\right)+f^{0}\left(t, x_{0}(t), x_{0}\left(t-\tau_{0}\right), u_{0}(t)\right)\right] d t=J\left(w_{0}\right),
\end{gathered}
$$

(see (4.2),(4.3)). Here, by definition of \hat{J}, the inequality is impossible. The optimality of the element w_{0} has been proved.

Acknowledgement. The work was supported by the Sh. Rustaveli National Science Foundation, Grant No 31/23.

REFERENCES

1. Angel T.S. Existence theorems for optimal control problems involving functional differential equations. J. Optim. Theory Appl., 7 (1971), 149-189.
2. Tadumadze T.A. On the existence of a solution in optimal problems with deviated argument. (Russian) Soobshch.Akad.Nauk GSSR, 89, 2 (1978), 313-316.
3. Tadumadze T.A. On the existence of a solution in neutral optimal problems. (Russian) Soobshch. Akad. Nauk GSSR, 97, 1 (1980), 33-36.
4. Tadumadze T. Existene theorems for solutions of optimal problems with variable delays. Control and Cybernetis, 10, 3-4 (1981), 125-134.
5. Kharatishvili G.L., Tadumadze T.A. Variation formulas of solutions and optimal control problems for differential equations with retarded argument. J. Math. Sci. (NY), 104, 1 (2007), 1-175.
6. Schwartz L. Analysis. (Russian) v. 1, Mir, Moscow, 1972.
7. Tadumadze T., Gorgodze N., Ramishvili I. On the well-posedness of the Cauchy problem for quasi-linear differential equations of neutral type. J. Math. Sci. (N.Y.), 151, 6 (2008), 3611-3630.
8. Ekeland I. and Temam R. Convex analysis and variational problems. (Russian), Mir, Moscow, 1979.

Received 31.05.2014; revised 17.09.2014; accepted 20.10.2014.
Authors' addresses:
T. Tadumadze
Iv. Javakhishvili Tbilisi State University

Department of Mathematics \&
I. Vekua Institute of Applied Mathematics

2, University St., Tbilisi 0186
Georgia
E-mail:tamaz.tadumadze@tsu.ge
A. Nachaoui

University of Nantes/CNRS UMR 6629
Jean Leray Laboratory of Mathematics
2 rue de Houssiniere, B.P. 92208, 44322 Nantes,
France
E-mail: nachaoui@math.cnrs.fr

