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Abstract. Variation formulas of solution are obtained for linear with respect to prehistory

of the phase velocity (quasi-linear) controlled neutral functional-differential equation with

variable delays. The effects of delay function perturbation and continuous initial condition

are detected in the variation formulas.
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Let I = [a, b] be a finite interval and let Rn be the n-dimensional vector space of
points x = (x1, ..., xn)T , where T is the sign of transposition. Suppose that O ⊂ Rn

x and
U0 ⊂ Rr

u are open sets. Let the n-dimensional function f(t, x, y, u) satisfy the following
conditions: for almost all t ∈ I, the function f(t, ·) : O2 × U0 → Rn

x is continuously
differentiable; for any (x, y, u) ∈ O2 × U0, the functions f(t, x, y, u), fx(·), fy(·), fu(·)
are measurable on I; for arbitrary compacts K ⊂ O,U ⊂ U0 there exists a function
mK,U(·) ∈ L(I, [0,∞)), such that for any (x, y, u) ∈ K2 × U and for almost all t ∈ I
the following inequality is fulfilled

| f(t, x, y, u) | + | fx(·) | + | fy(·) | + | fu(·) |≤ mK,U(t).

Further, letD be the set of continuously differentiable scalar functions (delay functions)
τ(t), t ∈ I, satisfying the conditions:

τ(t) < t, τ̇(t) > 0, inf{τ(a) : τ ∈ D} := τ̂ > −∞.

Let Φ be the set of continuously differentiable initial functions φ(t) ∈ O, t ∈ I1 =
[τ̂ , b] and let Ω = {u ∈ Eu : clu(I) ⊂ U0} be the set of control functions, where Eu is
the space of bounded measurable functions u : I → Rr

u and u(I) = {u(t) : t ∈ I}
To each element µ = (t0, τ, φ, u) ∈ Λ = [a, b) × D × Ω we assign the quasi-linear

controlled neutral functional-differential equation

ẋ(t) = A(t)ẋ(σ(t)) + f(t, x(t), x(τ(t)), u(t)) (1)

with the continuous initial condition

x(t) = φ(t), t ∈ [τ̂ , t0], (2)

where A(t) is a given continuous matrix function with dimension n × n;σ ∈ D is a
fixed delay function.
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Definition 1. Let µ = (t0, τ, φ, u) ∈ Λ. A function x(t) = x(t;µ) ∈ O, t ∈
[τ̂ , t1], t1 ∈ (t0, b], is called a solution of equation (1) with the initial condition (2) or
a solution corresponding to the element µ and defined on the interval [τ̂ , t1], if x(t)
satisfies condition (2) and is absolutely continuous on the interval [t0, t1] and satisfies
equation (1) almost everywhere on [t0, t1].

Let µ0 = (t00, τ0, φ0, u0) ∈ Λ be a given element and let x0(t) be the solution
corresponding to µ0 and defined on [τ̂ , t10], with a < t00 < t10 < b.

Let us introduce the set of variations

V =
{
δµ = (δt0, δτ, δφ, δu) : | δt0 |≤ α, ∥ δτ ∥≤ α,

δφ =
k∑

i=1

λiδφi, | λi |≤ α, i = 1, k, ∥ δu ∥≤ α
}
.

Here
δt0 ∈ R, δτ ∈ D − τ0, ∥δτ∥ = sup{|δτ(t)| : t ∈ I}, δu ∈ Ω− u0

and
δφi ∈ Φ− φ0, i = 1, k

are fixed functions, α > 0 is a fixed number.
There exist numbers δ1 > 0 and ε1 > 0 such that for arbitrary (ε, δµ) ∈ (0, ε1]× V

the element µ0 + εδµ ∈ Λ and there corresponds the solution x(t;µ0 + εδµ) defined on
the interval [τ̂ , t10 + δ1] ⊂ I1 ( [1],Theorem 3).

Due to the uniqueness, the solution x(t;µ0) is a continuation of the solution x0(t)
on the interval [τ̂ , t10 + δ1]. Therefore, the solution x0(t) is assumed to be defined on
the interval [τ̂ , t10 + δ1].

Let us define the increment of the solution x0(t) = x(t;µ0) :

∆x(t; εδµ) = x(t;µ0 + εδµ)− x0(t), ∀(t, ε, δµ) ∈ [τ̂ , t10 + δ1]× (0, ε1]× V.

Theorem 1. Let the following conditions hold:
1) The function f0(z), z = (t, x, y) ∈ I×O2 is bounded, where f0(t, x, y) = f(t, x, y, u0(t));
2) There exists the limit

lim
z→z0

f0(z) = f−
0 , z ∈ (a, t00]×O2

where z0 = (t00, φ0(t00), φ0(τ0(t00))). Then there exist numbers ε2 ∈ (0, ε1) and δ2 ∈
(0, δ1) such that

∆x(t; εδµ) = εδx(t; δµ) + o(t; εδµ) (3)

for arbitrary (t, ε, δµ) ∈ [t00, t10 + δ2] × (0, ε2] × V −, where V − = {δµ ∈ V : δt0 ≤ 0}
and

δx(t; δµ) = Y (t00−; t)[φ̇0(t00)− A(t00)φ̇0(σ(t00))− f−
0 ]δt0 + β(t; δµ), (4)

β(t; δµ) = Ψ(t00; t)δφ(t00) +

∫ t00

τ0(t00)

Y (γ0(s); t)f0y[γ0(s)]γ̇0(s)δφ(s)ds
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+

∫ t00

σ(t00)

Y (ϱ(s); t)A(ϱ(s))ϱ̇(s)δ̇φ(s)ds+

∫ t

t00

Y (s; t)f0y[s]ẋ0(τ0(s))δτ(s)ds

+

∫ t

t00

Y (s; t)f0u[s]δu(s)]ds; (5)

lim
ε→0

o(t; εδµ)

ε
= 0 uniformly for (t, δµ) ∈ [t00, t10 + δ2]× V −,

Y (s; t) and Ψ(s; t) are n× n-matrix functions satisfying the system{
Ψs(s; t) = −Y (s; t)f0x[t]− Y (γ0(s); t)f0y[γ0(s)]γ̇0(s),

Y (s; t) = Ψ(s; t) + Y (ϱ(s); t)A(ϱ(s))ϱ̇(s), s ∈ [t00 − δ2, t]

and the condition

Ψ(s; t) = Y (s; t) =

{
H, s = t,

Θ, s > t;

f0x[s] = f0x(s, x0(s), x0(τ0(s)));

γ0(s) is the inverse function of τ0(t), ϱ(s) is the inverse function of σ(t), H is the identity
matrix and Θ is the zero matrix.

Some comments. The function δx(t; δµ) is called the variation of the solution
x0(t), t ∈ [t00, t10 + δ2], and the expression (4) is called the variation formula.

The addend ∫ t

t00

Y (s; t)f0y[s]ẋ0(τ0(s))δτ(s)ds

in formula (5) is the effect of perturbation of the delay function τ0(t).
The expression

Y (t00−; t)[φ̇0(t00)− A(t00)φ̇0(σ(t00))− f−
0 ]δt0

is the effect of continuous initial condition (2) and perturbation of the initial moment
t00.

The expression

Ψ(t00; t)δφ(t00) +

∫ t00

τ0(t00)

Y (γ0(s); t)f0y[γ0(s)]γ̇0(s)δφ(s)ds

+

∫ t00

σ(t00)

Y (ϱ(s); t)A(ϱ(s))ϱ̇(s)δ̇φ(s)ds

in formula (5) is the effect of perturbation of the initial function φ0(t).
The expression ∫ t

t00

Y (s; t)f0u[s]δu(s)]ds

in formula (5) is the effect of perturbation of the control function u0(t).
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Variation formulas of solution for various classes of neutral functional differential
equations without perturbation of delay are given in [2-4]. The variation formula of
solution plays the basic role in proving the necessary conditions of optimality and under
sensitivity analysis of mathematical models [5-8]. Finally we note that the variation
formula allows to obtain an approximate solution of the perturbed equation

ẋ(t) = A(t)ẋ(σ(t)) + f(t, x(t), x(τ0(t) + εδτ(t)), u0(t) + εδu(t))

with the perturbed initial condition

x(t) = φ0(t) + εδφ(t), t ∈ [τ̂ , t00 + εδt0].

In fact, for a sufficiently small ε ∈ (0, ε2] it follows from (3) that

x(t;µ0 + εδµ) ≈ x0(t) + εδx(t; δµ).

Theorem 2. Let the following conditions hold:
1) The function f0(z), z ∈ I ×O2 is bounded;
2) There exists the limit

lim
z→z0

f0(z) = f+
0 , z ∈ [t00, b)×O2

Then for each t̂0 ∈ (t00, t10) there exist numbers ε2 ∈ (0, ε1) and δ2 ∈ (0, δ1) such that
for arbitrary (t, ε, δµ) ∈ [t̂0, t10 + δ2] × (0, ε2] × V +, where V + = {δµ ∈ V : δt0 ≥ 0},
formula (3) holds, where

δx(t; δµ) = Y (t00+; t)(φ̇(t00)− A(t00)ẋ(σ(t00))− f+
0 )δt0 + β(t; δµ).

The following assertion is a corollary to Theorems 1 and 2.
Theorem 3. Let the assumptions of Theorems 1 and 2 be fulfilled. Moreover,

f−
0 = f+

0 := f̂0 and t00 /∈ {σ(t10), σ2(t10)), ...}. Then there exist numbers ε2 ∈ (0, ε1)
and δ2 ∈ (0, δ1) such that for arbitrary (t, ε, δµ) ∈ [t10−δ2, t10+δ2]×(0, ε2]×V formula
(3) holds, where

δx(t; δµ) = Y (t00; t)(A(t00)ẋ(σ(t00))− f̂0)δt0 + β(t; δµ).

All assumptions of Theorem 3 are satisfied if the function f0(t, x, y) is continuous and
bounded. Clearly, in this case f̂0 = f0(t00, φ0(t00), φ0(τ0(t00))).
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