ON OSCILLATORY PROPERTIES OF SOLUTIONS OF *n*-TH ORDER GENERALIZED EMDEN-FOWLER DIFFERENTIAL EQUATIONS WITH DELAY ARGUMENT

Koplatadze R.

Abstract. In the paper the following differential equation

$$u^{(n)}(t) + p(t) |u(\tau(t))|^{\mu(t)} \operatorname{sign} u(\tau(t)) = 0$$

is considered, where $n \geq 3$, $p \in L_{\text{loc}}(R_+; R_-)$, $\mu \in C(R_+; (0, +\infty))$, $\tau \in C(R_+; R_+)$, $\tau(t) \leq t$ for $t \in R_+$ and $\lim_{t \to +\infty} \tau(t) = +\infty$. We say that the equation is "almost linear" if the condition $\lim_{t \to +\infty} \mu(t) = 1$ is fulfilled, while if $\limsup_{t \to +\infty} \mu(t) \neq 1$ or $\liminf_{t \to +\infty} \mu(t) \neq 1$, then the equation is an essentially nonlinear differential equation. In case of "almost linear" and essentially nonlinear differential equations to have Property **A** have been extensively studied [1–5]. In the paper new sufficient conditions are established for a general class of essentially nonlinear functional differential equations to have Property **B**.

Keywords and phrases: Property B, oscillation, functional differential equation.

AMS subject classification (2010): 34K11.

1. Introduction

This work deals with the investigation of oscillatory properties of solutions of a functional-differential equation of the form

$$u^{(n)}(t) + p(t) \left| u(\tau(t)) \right|^{\mu(t)} \operatorname{sign} u(\tau(t)) = 0,$$
(1.1)

where

$$p \in L_{\text{loc}}(R_+; R_-), \quad \mu \in C(R_+; (0, +\infty)),$$

$$\tau \in C(R_+; R_+), \quad \tau(t) \le t \quad \text{and} \quad \lim_{t \to +\infty} \tau(t) = +\infty.$$
(1.2)

It will always be assumed that the condition

$$p(t) \le 0 \quad \text{for} \quad t \in R_+ \tag{1.3}$$

is fulfilled.

Let $t_0 \in R_+$. A function $u : [t_0, +\infty)$ is said to be a proper solution of equation (1.1) if it is locally absolutely continuous together with its derivatives up to order n-1 inclusive, $\sup\{|u(s)| : s \ge t\} > 0$ for $t \ge t_0$ and there exists a function $\overline{u} \in C(R_+; R)$ such that $\overline{u}(t) \equiv u(t)$ on $[t_0, +\infty)$ and the equality $\overline{u}^{(n)}(t) + p(t)|\overline{u}(\tau(t))|^{\mu(t)} \operatorname{sign} \overline{u}(\tau(t)) = 0$ holds almost everywhere for $t \in [t_0, +\infty)$. A proper solution $u : [t_0, +\infty) \to R$ of equation (1.1) is said to be oscillatory if it has a sequence of zeros tending to $+\infty$. Otherwise the solution u is said to be nonoscillatory. **Definition 1.1.** We say that equation (1.1) has Property A if any of its proper solutions is oscillatory when n is even, and either is oscillatory or satisfies

$$\left| u^{(i)}(t) \right| \downarrow 0 \quad \text{as} \quad t \uparrow +\infty \quad (i = 0, \dots, n-1) \tag{1.4}$$

when n is odd.

Definition 1.2. We say that equation (1.1) has Property **B** if any of its proper solutions is either oscillatory or satisfies either (1.4) or

$$|u^{(i)}(t)| \uparrow +\infty \quad \text{as} \quad t\uparrow +\infty \quad (i=0,\ldots,n-1)$$
 (1.5)

when n is even and either is oscillatory or satisfies (1.5), when n is odd.

Definition 1.3. We say that equation (1.1) is almost linear if the condition $\lim_{t \to +\infty} \mu(t)$

= 1 holds, while if $\liminf_{t \to +\infty} \mu(t) \neq 1$ or $\limsup_{t \to +\infty} \mu(t) \neq 1$, then we say that the equation is an essentially nonlinear differential equation.

Oscillatory properties of almost linear and essentially nonlinear differential equation with advanced argument are studied well enough in [1-5]. For Emden-Fowler equations with deviating arguments, essential contribution was made in [6-9]. In the present paper for the generalized differential equation with delay argument, sufficient conditions are established for equation (1.1) to have Property **B**. Analogously results for Property **A**, see [10].

2. Essentially nonlinear differential equation with property B

The following notations will be used throughout the work

$$\alpha = \inf \{ \mu(t) : t \in R_+ \}, \quad \beta = \sup \{ \mu(t) : t \in R_+ \},$$

$$\tau_{(-1)}(t) = \sup \{ s \ge 0, \ \tau(s) \le t \}, \quad \tau_{(-k)} = \tau_{(-1)} \circ \tau_{(-(k-1))}, \quad k = 2, 3, \dots$$
(2.1)

Clearly $\tau_{(-1)}(t) \ge t$ and $\tau_{(-1)}$ is nondecreasing and coincides with the inverse of τ when the latter exists.

Let $\alpha \in [1, +\infty)$, $\gamma \in (1, +\infty)$, $\ell \in \{1, \dots, n-2\}$ and $t_* \in R_+$. Denote

$$\rho_{1,\ell,t_*}^{(\alpha)}(t) = \ell! \exp\left\{\gamma_\ell(\alpha) \int_{\tau_{(-1)}(t_*)}^t \int_s^{+\infty} \xi^{n-\ell-2}(\tau(\xi))^{1+(\ell-1)\mu(\xi)} |p(\xi)| d\xi \, ds\right\}, \quad (2.2)$$

$$\rho_{i,\ell,t_*}^{(\alpha)}(t) = \ell! + \frac{1}{(n-\ell)!} \int_{\tau_{(-i)}(t_*)}^{t} \int_{s}^{+\infty} \xi^{n-\ell-1}(\tau(\xi))^{(\ell-1)\mu(\xi)} \times \left(\frac{1}{\ell!} \rho_{i-1,\ell,t_*}^{\alpha)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds \quad (i=2,3,\dots),$$
(2.3)

$$\gamma_{\ell}(\alpha) = \begin{cases} \gamma & \text{if } \alpha > 1, \\ \frac{1}{\ell! (n-\ell)!} & \text{if } \alpha = 1. \end{cases}$$
(2.4)

In the section, when $\alpha > 1$, we derive sufficient conditions for functional differential equation (1.1) to have Property **B**.

Proposition 2.1. Let $\alpha > 1$, conditions (1.2) and (1.3) be fulfilled and for any $\ell \in \{1, \ldots, n\}$ with $\ell + n$ even, the conditions

$$\int_{0}^{+\infty} t^{n-\ell} (c, \tau^{\ell-1}(t))^{\mu(t)} |p(t)| dt = +\infty \quad for \ c \in (0, 1]$$
(2.5_{\ell,c})

and

$$\int_{0}^{+\infty} t^{n-\ell-1} (\tau(t))^{\ell\mu(t)} |p(t)| dt = +\infty \text{ for } \ell \in \{1, \dots, n-2\}$$
(2.6_ℓ)

be fulfilled. Moreover, let for any large $t_* \in R$, for some $k \in N$, $\gamma \in (1, +\infty)$ and $\delta \in (1, \alpha]$

$$\int_{\tau_{(-k)}(t_*)}^{+\infty} \int_{s}^{+\infty} \xi^{n-\ell-1-\delta}(\tau(\xi))^{\delta+(\ell-1)\mu(\xi)} \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(\alpha)}(\tau(\xi))\right)^{\mu(\xi)-\delta} |p(\xi)| d\xi \, ds = +\infty.$$
 (2.7_ℓ)

Then equation (1.1) has Property **B**, where α is defined by first condition of (2.1) and $\rho_{k,\ell,t_*}^{(\alpha)}$ is given by (2.2)–(2.4).

Proposition 2.1'. Let $\alpha > 1$, $\beta < +\infty$, conditions (1.2) and (1.3) be fulfilled and for any $\ell \in \{1, \ldots, n-2\}$ with $\ell + n$ even, conditions $(2.5_{\ell,1})$ and (2.6_{ℓ}) hold. Moreover, let for some $k \in N$, $\gamma \in (1, +\infty)$ and $\delta \in (1, \alpha]$ condition (2.7_{ℓ}) be fulfilled. Then equation (1.1) has Property **B**, where α and β are defined by (2.1) and $\rho_{k,\ell,t_*}^{(\alpha)}$ is given by (2.2)–(2.4).

Theorem 2.1. Let $\alpha > 1$, conditions (1.2), (1.3), (2.5_{1,c}) and

$$\liminf_{t \to +\infty} \frac{(\tau(t))^{\mu(t)}}{t} > 0 \tag{2.8}$$

be fulfilled. Moreover, let for some $\delta \in (1, \alpha]$ the conditions

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-2-\delta}(\tau(\xi))^{\delta} |p(\xi)| d\xi \, ds = +\infty,$$
(2.9)

when n is odd and

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-3-\delta}(\tau(\xi))^{\delta+\mu(\xi)} |p(\xi)| d\xi \, ds = +\infty, \tag{2.10}$$

when n is even, be fulfilled. Then equation (1.1) has Property **B**, where α is defined by the first condition of (2.1).

Theorem 2.1'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.5_{1.1}), (2.6₁) and (2.8) be fulfilled. Moreover, let for some $\delta \in (1, \alpha)$, when n is odd (n is even) condition (2.9) ((2.10)) holds. Then equation (1.1) has Property **B**, where α and β are given by (2.1).

Remark 2.1. In Theorem 2.1 condition $(2.5_{1,c})$ cannot be replaced by condition $(2.5_{1,1})$. Indeed, let $n \ge 3$, $c \in (0,1)$, $c_1 \in (c,1)$,

$$\mu(t) = n \log_{\frac{1}{c_1}} t, \quad p(t) = -\frac{c \, n!}{t^{1+n}} \, c^{-\mu(t)} \left(t^{n-1} + \frac{(-1)^n}{t} \right)^{-\mu(t)} \text{ and } \tau(t) \equiv t.$$

It is obvious that condition $(2.5_{1,1})$ is fulfilled, but for large t, equation (1.1) has the solution $u(t) = c(t^{n-1} + \frac{(-1)^n}{t})$. Therefore, equation (1.1) has the solution u, satisfying the condition $\lim_{t\to+\infty} u^{(n-1)}(t) = c(n-1)!$, that is equation (1.1) does not have Property **B**.

Theorem 2.2. Let $\alpha > 1$, let conditions (1.2), (1.3), (2.5_{1,c}), (2.6₁) and (2.8) be fulfilled and

$$\liminf_{t \to +\infty} t \int_{t}^{+\infty} s^{n-3} \tau(s) |p(s)| ds > 0.$$
(2.11)

Moreover, let for some $\delta \in (1, \alpha]$ and $\gamma > 0$

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{n-2-\delta}(\tau(\xi))^{\delta+\gamma(\mu(\xi)-\delta)} |p(\xi)| d\xi \, ds = +\infty.$$
 (2.12)

Then equation (1.1) has Property **B**, where α is defined by the first condition of (2.1).

Theorem 2.2'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.5_{1.1}), (2.6₁), (2.8) and (2.11) be fulfilled. Moreover, if for some $\delta \in (1, \alpha]$ and $\gamma > 0$, condition (2.12) holds, then equation (1.1) has Property **B**, where α and β are given by (2.1).

Theorem 2.3. Let $\alpha > 1$, conditions (1.2), (1.3), (2.5_{1,c}), (2.6₁), (2.8) and (2.11) be fulfilled. Moreover, if there exists $m \in N$ such that

$$\liminf_{t \to +\infty} \frac{\tau^m(t)}{t} > 0, \tag{2.13}$$

then equation (1.1) has Property **B**, where α is given by the first condition of (2.1).

Theorem 2.3'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.5_{1.1}), (2.6₁), (2.8), (2.11) and for some $m \in N$ condition (2.13) be fulfilled. Then equation (1.1) has Property **B**, where α and β are given by (2.1).

Theorem 2.4. Let $\alpha > 1$, conditions (1.2), (1.3), (2.5_{*n*-1,*c*}), (2.6_{*n*-1}) and

$$\limsup_{t \to +\infty} \frac{(\tau(t))^{\mu(t)}}{t} < +\infty$$
(2.14)

be fulfilled. Moreover, if for some $\delta \in (1, \alpha]$

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{1-\delta}(\tau(\xi))^{\delta+(n-3)\mu(\xi)} |p(\xi)| d\xi \, ds = +\infty, \tag{2.15}$$

then equation (1.1) has Property **B**, where α is given by the first condition of (2.1).

Theorem 2.4'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.5_{*n*-1,1}), (2.6_{*n*-1}) and (2.14) be fulfilled. Moreover, if for some $\delta \in (1, \alpha]$ condition (2.15) holds, then equation (1.1) has Property **B**, where α and β are given by (2.1).

Theorem 2.5. Let $\alpha > 1$, conditions (1.2), (1.3), (2.5_{*n*-1,*c*}), (2.7_{*n*-1}) and (2.14) be fulfilled and

$$\liminf_{t \to +\infty} t \int_{t}^{+\infty} (\tau(s))^{1+(n-3)\mu(s)} |p(s)| ds > 0.$$
(2.16)

Moreover, if for some $\delta \in (1, \alpha]$ and $\gamma > 0$

$$\int_{0}^{+\infty} \int_{s}^{+\infty} \xi^{1-\delta}(\tau(\xi))^{\delta+(n-3)\mu(\xi)+\gamma(\mu(\xi)-\delta)} |p(\xi)| d\xi \, ds = +\infty, \tag{2.17}$$

then equation (1.1) has Property **B**, where α is given by (2.1).

Theorem 2.5'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.5_{n-1,1}), (2.6_{n-1}), (2.14) and (2.16) be fulfilled and for some $\delta \in (1, \alpha)$ and $\gamma > 0$ condition (2.17) holds. Then equation (1.1) has Property **B**, where α and β are given by (2.1).

Theorem 2.6 Let $\alpha > 1$, conditions (1.2), (1.3), (2.5_{*n*-1,*c*}), (2.6_{*n*-1}), (2.14) and (2.17) be fulfilled. Moreover, if for some $m \in N$ condition (2.13) holds, then equation (1.1) has Property **B**, where α is given by (2.1).

Theorem 2.6'. Let $\alpha > 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.5_{*n*-1,1}), (2.6_{*n*-1}) and (2.17) be fulfilled. Moreover, if for some $m \in N$ condition (2.13) holds, then equation (1.1) has Property **B**, where α and β are given by (2.1).

3. Quasi-linear differential equations with property B

In the section we define sufficient conditions for functional differential equations (1.1), when $\alpha = 1$, to have Property **B**.

Proposition 3.1 Let $\alpha = 1$, conditions (1.2) and (1.3) be fulfilled and for any $\ell \in \{1, \ldots, n+1\}$ with $\ell + n$ even, conditions $(2.5_{\ell,c})$ and (2.6_{ℓ}) hold. Let moreover, for any large $t_* \in R_+$ and for some $k \in N$

$$\limsup_{t \to +\infty} \frac{1}{t} \int_{\tau_{(-k)}(t_*)}^t \int_s^{+\infty} \xi^{n-\ell-1} (\tau(\xi))^{(\ell-1)\mu(t)} \times \left(\frac{1}{\ell!} \rho_{k,\ell,t_*}^{(1)}(\tau(\xi))\right)^{\mu(\xi)} |p(\xi)| d\xi \, ds > 0.$$
(3.1_ℓ)

Then equation (1.1) has Property **B**, where α is given by the first condition of (2.1).

Proposition 3.1'. Let $\alpha = 1$ and $\beta < +\infty$, conditions (1.2) and (1.3) be fulfilled and for any $\ell \in \{1, ..., n\}$ with $\ell + n$ even, conditions $(2.5_{\ell,1})$ and (2.6_{ℓ}) hold. Moreover, let for any large $t_* \in R_+$ and for some $k \in N$, condition (3.1_{ℓ}) holds. Then equation (1.1) has Property **B**, where α and β are given by (2.1).

Theorem 3.1 Let $\alpha = 1$, conditions (1.2), (1.3), (2.5_{1,c}), (2.6₁) and (2.8) be fulfilled and

$$\limsup_{t \to +\infty} \frac{1}{t} \int_0^t \int_s^{+\infty} \xi^{n-2} |p(\xi)| d\xi \, ds > 0.$$
(3.2)

Then equation (1.1) has Property **B**, where α is defined by first condition of (2.1).

Theorem 3.1'. Let $\alpha = 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.5_{1,1}), (2.6₁), (2.8) and (3.2) be fulfilled. Then equation (1.1) has Property **B**, where α and β are given by (2.1).

Theorem 3.2 Let $\alpha = 1$, conditions (1.2), (1.3), (2.5_{1,c}), (2.6₁) be fulfilled. Let moreover

$$\liminf_{t \to +\infty} \frac{(\tau(t))^{\mu(t)}}{t} > 1 \tag{3.3}$$

and

$$\liminf_{t \to +\infty} t \int_{t}^{+\infty} s^{n-3} \tau(s) ds > (n-1)!.$$

$$(3.4)$$

Then for equation (1.1) to have Property **B** it is sufficient that

$$\limsup_{t \to +\infty} \frac{1}{t} \int_0^t \int_s^{+\infty} \xi^{n-2} (\tau(\xi))^{\mu(\xi)} |p(\xi)| d\xi \, ds > 0.$$
(3.5)

Theorem 3.2'. Let $\alpha = 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.5_{1,1}), (2.6₁), (3.3) and (3.4) be fulfilled. Then equation (1.1) has Property **B**, it is sufficient that condition (3.5) holds.

Theorem 3.3 Let $\alpha = 1$, conditions (1.2), (1.3), (2.5_{*n*-1,*c*}), (2.6_{*n*-2}) be fulfilled. Moreover, if the conditions

$$\liminf_{t \to +\infty} \frac{(\tau(t))^{\mu(t)}}{t} < 1 \tag{3.6}$$

and

$$\liminf_{t \to +\infty} t \int_{t}^{+\infty} (\tau(s))^{1+(n-3)\mu(s)} |p(s)| ds > 2(n-2)!$$
(3.7)

are fulfilled, then for equation (1.1) to have Property **B** it is sufficient that

$$\limsup_{t \to +\infty} \frac{1}{t} \int_0^t \int_s^{+\infty} \xi(\tau(\xi))^{(n-3)\mu(\xi)} (\tau(\xi))^{\mu(\xi)} |p(\xi)| d\xi \, ds > 0.$$
(3.8)

Theorem 3.3'. Let $\alpha = 1$ and $\beta < +\infty$, conditions (1.2), (1.3), (2.5_{n-1,1}), (2.6_{n-1}), (3.6) and (3.7) be fulfilled. Then for equation (1.1) to have Property **B**, it is sufficient that condition (3.8) holds.

Acknowledgement. The work was supported by the Sh. Rustaveli National Science Foundation. Grant No 31/09.

REFERENCES

1. Graef J., Koplatadze R., Kvinikadze G. Nonlinear functional differential equations with Properties A and B. J. Math. Anal. Appl., **306**, 1 (2005), 136-160.

2. Koplatadze R. Quasi-linear functional differential equations with Property A. J. Math. Anal. Appl. **330**, 1 (2007), 483-510.

3. Koplatadze R. On oscillatory properties of solutions of generalized Emden-Fowler type differential equations. *Proc. A. Razmadze Math. Inst.*, **145** (2007), 117-121.

4. Koplatadze R. On asymptotic behaviors of solutions of "almost linear" and essential nonlinear functional differential equations. *Nonlinear Anal.*, **71**, 12 (2009), e396-e400.

5. Koplatadze R., Litsyn E. Oscillation criteria for higher order "almost linear" functional differential equations. *Funct. Differ. Equ.*, **16**, 3 (2009), 387-434.

6. Koplatadze R. A note on the conjugacy of the solutions of higher order differential inequalities and equations with retarded argument. (Russian) *Differencialnye Uravnenija*, **10** (1974), 1400-1405, 1538.

7. Koplatadze R., Chanturiya T. Oscillation properties of differential equations with deviating argument. (Russian) *Izdat. Tbilis. Univ.*, *Tbilisi*, 1977.

8. Koplatadze R. On asymptotic behavior of solutions of *n*-th order Emden-Fowler differential equations with advanced argument. *Czechoslovak Math. J.*, **60**, 3 (135) (2010), 817-833.

9. Koplatadze R. On oscillatory properties of solutions of functional-differential equations. *Mem. Differential Equations Math. Phys.*, **3** (1994), 1-179.

10. Domoshnitsky A., Koplatadze R. On asymptotic behavior of solutions of generalized Emden-Fowler differential equations with delay argument. *Abstr. Appl. Anal.*, (2014), Art. ID 168425.

Received 3.09.2014; revised 12.10.2014; accepted 30.10.2014.

Author's address:

R. Koplatadze
I. Vekua Institute of Applied Mathematics of Iv. Javakhishvili Tbilisi State University
2, University St., Tbilisi 0186
Georgia
E-mail: roman.koplatadze@tsu.ge