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ON OSCILLATORY PROPERTIES OF SOLUTIONS OF n-TH ORDER
GENERALIZED EMDEN-FOWLER DIFFERENTIAL EQUATIONS WITH

DELAY ARGUMENT

Koplatadze R.

Abstract. In the paper the following differential equation

u(n)(t) + p(t)
∣∣u(τ(t))∣∣µ(t) signu(τ(t)) = 0

is considered, where n ≥ 3, p ∈ Lloc(R+;R−), µ ∈ C(R+; (0,+∞)), τ ∈ C(R+;R+), τ(t) ≤ t

for t ∈ R+ and lim
t→+∞

τ(t) = +∞. We say that the equation is “almost linear” if the condition

lim
t→+∞

µ(t) = 1 is fulfilled, while if lim sup
t→+∞

µ(t) ̸= 1 or lim inf
t→+∞

µ(t) ̸= 1, then the equation is an

essentially nonlinear differential equation. In case of “almost linear” and essentially nonlinear

differential equations to have Property A have been extensively studied [1–5]. In the paper

new sufficient conditions are established for a general class of essentially nonlinear functional

differential equations to have Property B.
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1. Introduction

This work deals with the investigation of oscillatory properties of solutions of a
functional-differential equation of the form

u(n)(t) + p(t)
∣∣u(τ(t))∣∣µ(t) signu(τ(t)) = 0, (1.1)

where
p ∈ Lloc(R+;R−), µ ∈ C(R+; (0,+∞)),

τ ∈ C(R+;R+), τ(t) ≤ t and lim
t→+∞

τ(t) = +∞.
(1.2)

It will always be assumed that the condition

p(t) ≤ 0 for t ∈ R+ (1.3)

is fulfilled.
Let t0 ∈ R+. A function u : [t0,+∞) is said to be a proper solution of equation (1.1)

if it is locally absolutely continuous together with its derivatives up to order n− 1 in-
clusive, sup{|u(s)| : s ≥ t} > 0 for t ≥ t0 and there exists a function u ∈ C(R+;R) such
that u(t) ≡ u(t) on [t0,+∞) and the equality u (n)(t) + p(t)|u(τ(t))|µ(t) signu(τ(t)) = 0
holds almost everywhere for t ∈ [t0,+∞). A proper solution u : [t0,+∞) → R of
equation (1.1) is said to be oscillatory if it has a sequence of zeros tending to +∞.
Otherwise the solution u is said to be nonoscillatory.
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Definition 1.1. We say that equation (1.1) has Property A if any of its proper
solutions is oscillatory when n is even, and either is oscillatory or satisfies∣∣u(i)(t)∣∣ ↓ 0 as t ↑ +∞ (i = 0, . . . , n− 1) (1.4)

when n is odd.
Definition 1.2. We say that equation (1.1) has Property B if any of its proper

solutions is either oscillatory or satisfies either (1.4) or∣∣u(i)(t)∣∣ ↑ +∞ as t ↑ +∞ (i = 0, . . . , n− 1) (1.5)

when n is even and either is oscillatory or satisfies (1.5), when n is odd.
Definition 1.3. We say that equation (1.1) is almost linear if the condition

lim
t→+∞

µ(t)

= 1 holds, while if lim inf
t→+∞

µ(t) ̸= 1 or lim sup
t→+∞

µ(t) ̸= 1, then we say that the equa-

tion is an essentially nonlinear differential equation.
Oscillatory properties of almost linear and essentially nonlinear differential equa-

tion with advanced argument are studied well enough in [1–5]. For Emden-Fowler
equations with deviating arguments, essential contribution was made in [6–9]. In the
present paper for the generalized differential equation with delay argument, sufficient
conditions are established for equation (1.1) to have Property B. Analogously results
for Property A, see [10].

2. Essentially nonlinear differential equation with property B

The following notations will be used throughout the work

α = inf
{
µ(t) : t ∈ R+

}
, β = sup

{
µ(t) : t ∈ R+

}
,

τ(−1)(t) = sup
{
s ≥ 0, τ(s) ≤ t

}
, τ(−k) = τ(−1) ◦ τ(−(k−1)), k = 2, 3, . . .

(2.1)

Clearly τ(−1)(t) ≥ t and τ(−1) is nondecreasing and coincides with the inverse of τ
when the latter exists.

Let α ∈ [1,+∞), γ ∈ (1,+∞), ℓ ∈ {1, . . . , n− 2} and t∗ ∈ R+. Denote

ρ
(α)
1,ℓ,t∗

(t) = ℓ! exp

{
γℓ(α)

∫ t

τ(−1)(t∗)

∫ +∞

s

ξn−ℓ−2(τ(ξ))1+(ℓ−1)µ(ξ)|p(ξ)|dξ ds
}
, (2.2)

ρ
(α)
i,ℓ,t∗

(t) = ℓ! +
1

(n− ℓ)!

∫ t

τ(−i)(t∗)

∫ +∞

s

ξn−ℓ−1(τ(ξ))(ℓ−1)µ(ξ)×

×
( 1
ℓ!
ρ
α)
i−1,ℓ,t∗

(τ(ξ))
)µ(ξ)

|p(ξ)|dξ ds (i = 2, 3, . . . ), (2.3)

γℓ(α) =

 γ if α > 1,
1

ℓ! (n− ℓ)!
if α = 1.

(2.4)

In the section, when α > 1, we derive sufficient conditions for functional differential
equation (1.1) to have Property B.
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Proposition 2.1. Let α > 1, conditions (1.2) and (1.3) be fulfilled and for any
ℓ ∈ {1, . . . , n} with ℓ+ n even, the conditions∫ +∞

0

tn−ℓ
(
c, τ ℓ−1(t)

)µ(t)|p(t)|dt = +∞ for c ∈ (0, 1] (2.5ℓ,c)

and ∫ +∞

0

tn−ℓ−1
(
τ(t)

)ℓ µ(t)|p(t)|dt = +∞ for ℓ ∈ {1, . . . , n− 2} (2.6ℓ)

be fulfilled. Moreover, let for any large t∗ ∈ R, for some k ∈ N , γ ∈ (1,+∞) and
δ ∈ (1, α]∫ +∞

τ(−k)(t∗)

∫ +∞

s

ξn−ℓ−1−δ(τ(ξ))δ+(ℓ−1)µ(ξ)
( 1
ℓ!
ρ
(α)
k,ℓ,t∗

(τ(ξ))
)µ(ξ)−δ

|p(ξ)|dξ ds = +∞. (2.7ℓ)

Then equation (1.1) has Property B, where α is defined by first condition of (2.1) and

ρ
(α)
k,ℓ,t∗

is given by (2.2)–(2.4).
Proposition 2.1′. Let α > 1, β < +∞, conditions (1.2) and (1.3) be fulfilled

and for any ℓ ∈ {1, . . . , n − 2} with ℓ + n even, conditions (2.5ℓ,1) and (2.6ℓ) hold.
Moreover, let for some k ∈ N , γ ∈ (1,+∞) and δ ∈ (1, α] condition (2.7ℓ) be fulfilled.

Then equation (1.1) has Property B, where α and β are defined by (2.1) and ρ
(α)
k,ℓ,t∗

is
given by (2.2)–(2.4).

Theorem 2.1. Let α > 1, conditions (1.2), (1.3), (2.51,c) and

lim inf
t→+∞

(τ(t))µ(t)

t
> 0 (2.8)

be fulfilled. Moreover, let for some δ ∈ (1, α] the conditions∫ +∞

0

∫ +∞

s

ξn−2−δ(τ(ξ))δ|p(ξ)|dξ ds = +∞, (2.9)

when n is odd and ∫ +∞

0

∫ +∞

s

ξn−3−δ(τ(ξ))δ+µ(ξ)|p(ξ)|dξ ds = +∞, (2.10)

when n is even, be fulfilled. Then equation (1.1) has Property B, where α is defined by
the first condition of (2.1).

Theorem 2.1′. Let α > 1 and β < +∞, conditions (1.2), (1.3), (2.51.1), (2.61) and
(2.8) be fulfilled. Moreover, let for some δ ∈ (1, α), when n is odd (n is even) condition
(2.9) ((2.10)) holds. Then equation (1.1) has Property B, where α and β are given by
(2.1).

Remark 2.1. In Theorem 2.1 condition (2.51,c) cannot be replaced by condition
(2.51,1). Indeed, let n ≥ 3, c ∈ (0, 1), c1 ∈ (c, 1),

µ(t) = n log 1
c1

t, p(t) = − c n!

t1+n
c−µ(t)

(
tn−1 +

(−1)n

t

)−µ(t)

and τ(t) ≡ t.
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It is obvious that condition (2.51,1) is fulfilled, but for large t, equation (1.1) has

the solution u(t) = c(tn−1 + (−1)n

t
). Therefore, equation (1.1) has the solution u,

satisfying the condition lim
t→+∞

u(n−1)(t) = c(n−1)!, that is equation (1.1) does not have

Property B.
Theorem 2.2. Let α > 1, let conditions (1.2), (1.3), (2.51,c), (2.61) and (2.8) be

fulfilled and

lim inf
t→+∞

t

∫ +∞

t

sn−3τ(s)|p(s)|ds > 0. (2.11)

Moreover, let for some δ ∈ (1, α] and γ > 0∫ +∞

0

∫ +∞

s

ξn−2−δ(τ(ξ))δ+γ(µ(ξ)−δ)|p(ξ)|dξ ds = +∞. (2.12)

Then equation (1.1) has Property B, where α is defined by the first condition of (2.1).
Theorem 2.2′. Let α > 1 and β < +∞, conditions (1.2), (1.3), (2.51.1), (2.61),

(2.8) and (2.11) be fulfilled. Moreover, if for some δ ∈ (1, α] and γ > 0, condition
(2.12) holds, then equation (1.1) has Property B, where α and β are given by (2.1).

Theorem 2.3. Let α > 1, conditions (1.2), (1.3), (2.51,c), (2.61), (2.8) and (2.11)
be fulfilled. Moreover, if there exists m ∈ N such that

lim inf
t→+∞

τm(t)

t
> 0, (2.13)

then equation (1.1) has Property B, where α is given by the first condition of (2.1).
Theorem 2.3′. Let α > 1 and β < +∞, conditions (1.2), (1.3), (2.51.1), (2.61),

(2.8), (2.11) and for some m ∈ N condition (2.13) be fulfilled. Then equation (1.1) has
Property B, where α and β are given by (2.1).

Theorem 2.4. Let α > 1, conditions (1.2), (1.3), (2.5n−1,c), (2.6n−1) and

lim sup
t→+∞

(τ(t))µ(t)

t
< +∞ (2.14)

be fulfilled. Moreover, if for some δ ∈ (1, α]∫ +∞

0

∫ +∞

s

ξ1−δ(τ(ξ))δ+(n−3)µ(ξ)|p(ξ)|dξ ds = +∞, (2.15)

then equation (1.1) has Property B, where α is given by the first condition of (2.1).
Theorem 2.4′. Let α > 1 and β < +∞, conditions (1.2), (1.3), (2.5n−1,1), (2.6n−1)

and (2.14) be fulfilled. Moreover, if for some δ ∈ (1, α] condition (2.15) holds, then
equation (1.1) has Property B, where α and β are given by (2.1).

Theorem 2.5. Let α > 1, conditions (1.2), (1.3), (2.5n−1,c), (2.7n−1) and (2.14) be
fulfilled and

lim inf
t→+∞

t

∫ +∞

t

(τ(s))1+(n−3)µ(s)|p(s)|ds > 0. (2.16)
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Moreover, if for some δ ∈ (1, α] and γ > 0∫ +∞

0

∫ +∞

s

ξ1−δ(τ(ξ))δ+(n−3)µ(ξ)+γ(µ(ξ)−δ)|p(ξ)|dξ ds = +∞, (2.17)

then equation (1.1) has Property B, where α is given by (2.1).
Theorem 2.5′. Let α > 1 and β < +∞, conditions (1.2), (1.3), (2.5n−1,1),

(2.6n−1), (2.14) and (2.16) be fulfilled and for some δ ∈ (1, α) and γ > 0 condition
(2.17) holds. Then equation (1.1) has Property B, where α and β are given by (2.1).

Theorem 2.6 Let α > 1, conditions (1.2), (1.3), (2.5n−1,c), (2.6n−1), (2.14) and
(2.17) be fulfilled. Moreover, if for some m ∈ N condition (2.13) holds, then equation
(1.1) has Property B, where α is given by (2.1).

Theorem 2.6′. Let α > 1 and β < +∞, conditions (1.2), (1.3), (2.5n−1,1), (2.6n−1)
and (2.17) be fulfilled. Moreover, if for some m ∈ N condition (2.13) holds, then
equation (1.1) has Property B, where α and β are given by (2.1).

3. Quasi-linear differential equations with property B

In the section we define sufficient conditions for functional differential equations
(1.1), when α = 1, to have Property B.

Proposition 3.1 Let α = 1, conditions (1.2) and (1.3) be fulfilled and for any
ℓ ∈ {1, . . . , n + 1} with ℓ + n even, conditions (2.5ℓ,c) and (2.6ℓ) hold. Let moreover,
for any large t∗ ∈ R+ and for some k ∈ N

lim sup
t→+∞

1

t

∫ t

τ(−k)(t∗)

∫ +∞

s

ξn−ℓ−1
(
τ(ξ)

)(ℓ−1)µ(t)×

×
(
1

ℓ!
ρ
(1)
k,ℓ,t∗

(τ(ξ))

)µ(ξ)

|p(ξ)|dξ ds > 0. (3.1ℓ)

Then equation (1.1) has Property B, where α is given by the first condition of (2.1).
Proposition 3.1′. Let α = 1 and β < +∞, conditions (1.2) and (1.3) be fulfilled

and for any ℓ ∈ {1, . . . , n} with ℓ+n even, conditions (2.5ℓ,1) and (2.6ℓ) hold. Moreover,
let for any large t∗ ∈ R+ and for some k ∈ N , condition (3.1ℓ) holds. Then equation
(1.1) has Property B, where α and β are given by (2.1).

Theorem 3.1 Let α = 1, conditions (1.2), (1.3), (2.51,c), (2.61) and (2.8) be fulfilled
and

lim sup
t→+∞

1

t

∫ t

0

∫ +∞

s

ξn−2|p(ξ)|dξ ds > 0. (3.2)

Then equation (1.1) has Property B, where α is defined by first condition of (2.1).
Theorem 3.1′. Let α = 1 and β < +∞, conditions (1.2), (1.3), (2.51,1), (2.61),

(2.8) and (3.2) be fulfilled. Then equation (1.1) has Property B, where α and β are
given by (2.1).

Theorem 3.2 Let α = 1, conditions (1.2), (1.3), (2.51,c), (2.61) be fulfilled. Let
moreover

lim inf
t→+∞

(τ(t))µ(t)

t
> 1 (3.3)
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and

lim inf
t→+∞

t

∫ +∞

t

sn−3τ(s))ds > (n− 1)!. (3.4)

Then for equation (1.1) to have Property B it is sufficient that

lim sup
t→+∞

1

t

∫ t

0

∫ +∞

s

ξn−2(τ(ξ))µ(ξ)|p(ξ)|dξ ds > 0. (3.5)

Theorem 3.2′. Let α = 1 and β < +∞, conditions (1.2), (1.3), (2.51,1), (2.61),
(3.3) and (3.4) be fulfilled. Then equation (1.1) has Property B, it is sufficient that
condition (3.5) holds.

Theorem 3.3 Let α = 1, conditions (1.2), (1.3), (2.5n−1,c), (2.6n−2) be fulfilled.
Moreover, if the conditions

lim inf
t→+∞

(τ(t))µ(t)

t
< 1 (3.6)

and

lim inf
t→+∞

t

∫ +∞

t

(τ(s))1+(n−3)µ(s)|p(s)|ds > 2(n− 2)! (3.7)

are fulfilled, then for equation (1.1) to have Property B it is sufficient that

lim sup
t→+∞

1

t

∫ t

0

∫ +∞

s

ξ(τ(ξ))(n−3)µ(ξ)(τ(ξ))µ(ξ)|p(ξ)|dξ ds > 0. (3.8)

Theorem 3.3′. Let α = 1 and β < +∞, conditions (1.2), (1.3), (2.5n−1,1),
(2.6n−1), (3.6) and (3.7) be fulfilled. Then for equation (1.1) to have Property B,
it is sufficient that condition (3.8) holds.
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