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ON THE HEXAGONAL QUANTUM BILLIARD

Khatiashvili N.

Abstract. In the paper a planar classical quantum billiard in the hexagonal type areas with

the hard wall conditions is considered. The process is described by the Helmholtz Equation in

the hexagon and hexagonal rug with the homogeneous boundary conditions. By means of the

conformal mapping method the problem is reduced to the elliptic partial differential equation

in the rectangle with the homogeneous boundary condition. It is assumed that one parameter

of mapping is sufficiently small. In this case the equation is simplified and analyzed. The

asymptotic solutions are obtained. The spectrum and the corresponding eigenfunctions are

found near the boundary of the hexagon. The wave functions are found in terms of the

Bessel’s functions. The results are applied for the estimation of the energy levels of electrons

in graphene.
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Introduction

Quantum Billiard is a dynamical system, which describes a motion of a free particle
inside a closed domain D with a piece-wise smooth boundary S [2, 3, 7-11, 13-17, 19-
22]. In this case the Schrödinger Equation for a free particle assumes the form of the
Helmholtz Equation and the spectrum of the Helmholtz Equation reflects the energy
levels of the particle.

In the paper the following equation with the homogeneous boundary condition,
when D is the hexagon, is considered

∆u(x, y) +
2m

h2
Eu(x, y) = 0 u|S = 0, (1∗)

where S is a boundary of D, u is the wave function of the particle, λ2 =
2m

h2
E is the

constant to be determined, E is the energy of the particle, m is mass, h is Planck’s
constant.

In some cases it is more convenient to replace the condition u|
S
= 0 by the condition

[2, 14, 17,19, 20, 22] ∫∫
D

|u|2dxdy = 1.

The hexagonal type areas are very important, as the atoms of Carbon and its al-
lotropes are arranged in the hexagonal type structures [4, 7, 17, 19, 20] and has a lot
of applications in microeletronics. For example, graphene is a one-atom thick sheet
of carbon atoms which form a hexagonal structure ([4], see “One atom thick billiard”
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https//sites.google.com/a/ucr.edu/physics-lau/) and electrons in such structures be-
have like quantum billiard balls [4, 7, 17, 21].

The problem is investigated by means of the conformal mapping and partial dif-
ferential equation. The Helmholtz Equation (1*) is transformed to the equation of
the elliptic type. One parameter of the mapping is chosen sufficiently small, the ini-
tial equation is simplified and replaced by the approximate elliptic equation.The wave
function and eigenvalues of this equation are found.

Statement of the problem

LetD be the hexagon of the plane z0 = x0+iy0, with the vertexes a1, a2, a3, a4, a5, a6
(a1 = 0, Re a4 = 0), and with the axis of symmetry a1a4 (Fig.1). In this area we
consider the following problem

Problem 1. To find a real function u(x0, y0) in D having second order derivatives,
satisfying the equation

∆u(x0, y0) + λ2u(x0, y0) = 0 (1)

and the boundary condition
u|

S
= 0, (2)

where λ is the constant to be determined, S is the boundary of D.
By means of the conformal mapping we reduce Problem 1 to the elliptic partial

differential equation in the rectangle.
At first we map the area D at the upper half-plane of the complex plane z = x+ iy,

by the Schwartz-Christoffel formula [1, 6, 15, 17] with the following correspondence of
points

a1 ↔ 0, a2 ↔ a, a3 ↔ b, a4 ↔ ∞, a5 ↔ −a, a6 ↔ −b; a, b > 0;

f(z) = z0 = C

z∫
0

t−1/3(t2 − a2)−1/3(t2 − b2)−1/3dt, (3)

where C is the definite constant, which is determined from the formula

a3 − a2 = C

b∫
a

t−1/3(t2 − a2)−1/3(t2 − b2)−1/3dt.

Let z = f(w) be the conformal mapping of the rectangle D0{−a0/2 ≤ u ≤
a0/2; 0 ≤ ν ≤ b0} with the boundary S0 of the plane w(w = ξ + iη), on the up-
per half-plane of z. This mapping will be given by [1, 6, 15, 17]

z = sn

(
w

C0

)
, (4)

or

w = C0

z∫
0

(1− t2)−1/2(1− k2t2)−1/2dt,
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with the following correspondence of points

0 ↔ 0, a↔ a0/2, b↔ a0/2 + ib0,∞ ↔ ib0,−a↔ −a0/2 + ib0,−b↔ −a0/2; a0, b0 > 0

(Fig. 2), where sn is the Jakobi “sinus” with the modulus k, having the periods 2a0
and 2b0, C0 is the definite constant which is defined from the tables [15, 18], a0 will be
chosen accordingly in the following.

By the mappings (3), (4) Problem 1 could be reduced to the following problem
Problem 2. To find a real function u0(ξ, η) in D0 having second order derivatives,

satisfying the following equation

∆u0(ξ, η) + λ2|f ′(w)|2u0(ξ, η) = 0, (5)

with the boundary condition
u0|S0

= 0,

where u0(ξ, η) = u(f(w)), and λ is the constant to be determined.

Fig. 1. The hexagonal area

Fig. 2. The image of the hexagon by the mapping z = f(w)
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Solution of Problem 2

It is obvious that
|f ′

w(w)|2 = |f ′
z(w)|2 · |z′w(w)|2. (6)

If we suppose a = 1, b = 1/k , from (3), (4), (6) after simple transformations we obtain

f ′
w(w)

2 = C2
1

cn
w

C0

dn
w

C0

sn
w

C0


2/3

. (7)

where C1 = k2/3 C
C0

and sn, cn, dn are the Jacobi functions [1, 5, 6, 15].
As three parameters of the conformal mapping can be chosen arbitrarily, we can

assume that q = e−πχ, (χ = 2b0
a0
), is sufficiently small and we can use formulas [5, 6,

15]

sn(w/C0) ≈ sin γ(1 + 4q cos2 γ),

cn(w/C0) ≈ cos γ(1− 4q sin2 γ),

dn(w/C0) ≈ (1− 8q sin2 γ),

(8)

where γ = πw
a0C0

. Without loss of generality we can also suppose q ≈ 0 [1, 5, 6, 15], then
the formulas (8) could be simplified and one obtains, (a0 will be chosen in the following
way)

sn(w/C0) ≈ sin γ,

cn(w/C0) ≈ cos γ,

dn(w/C0) ≈ 1,

k ≈ 0, 0213, b0 =
5a0
3
, C0 ≈

a0
3
.

(9)

Putting (9) into (7) we can write the approximate formula

|f ′
w(w)|2 ≈ |C1|2

(
1 + V

1− V

)2/3

, (10)

where

V =
cos(2πξ/a0c0)

cosh(2πη/a0c0)
,

By using (10) Equation (5) may be rewritten as

∆u0(ξ, η) + λ2|C1|2
(
1 + V

1− V

)2/3

u0(ξ, η) = 0. (11)

Hence, we obtain the degenerated elliptic equation.
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Now, let us choose a0 in such a way, that
(

6πξ
a20

)4
and

(
6πη
a20

)4
are negligible. Taking

into account (9) and

cos

(
2πξ

a0c0

)2

≈ 1− 1

2

(
6πξ

a20

)2

, cosh

(
2πη

a0c0

)2

≈ 1 +
1

2

(
6πη

a20

)2

,

from (11) we obtain(
9π2

a40

)2/3

(η2 + ξ2)2/3(
1 + 9

π2

a40
η2 − 9

π2

a40
ξ2
)2/3

∆u0(ξ, η) + λ2|C1|2u0(ξ, η) = 0. (12)

By using the approximate formula(
1 + 9

π2

a40
η2 − 9

π2

a40
ξ2
)−2/3

≈

(
1−

(
6
π2

a40
η2 − 6

π2

a40
ξ2
)
+

5

9

(
9
π2

a40
η2 − 9

π2

a40
ξ2
)2
)

and neglecting the terms

6
π2

a40

(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2), 45

(
π2

a40

)2(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)2,

from (12) one obtains the approximate equation(
9π2

a40

)2/3

(η2 + ξ2)2/3∆u0(ξ, η) + λ2|C1|2u0(ξ, η) = 0 (13)

In our case we have the following estimations(
6πξ

a20

)4

≤
(
3π

a0

)4

,

(
6πη

a20

)4

≤
(
10π

a0

)4

,

∣∣∣6π2

a40

(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)Big| ≤ 150

(
109

108

)2/3(
π

a0

)10/3

, (14)

45

(
π2

a40

)2(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)2 ≤ 55
(
109

108

)2/3(
π

a0

)16/3

,

(
9π2

a40

)2/3

(η2 + ξ2)2/3 ≤ 1092/3
(
π

2a0

)4/3

.

For example, if a0 = 103, then by (14)(
6πξ

a20

)4

≤ 7.9× 10−9,

(
6πη

a20

)4

≤ 9.7× 10−7,
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∣∣∣6π2

a40

(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)
∣∣∣ ≤ 6.8× 10−7,

45

(
π2

a40

)2(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)2 ≤ 1.4× 10−10,(
9π2

a40

)2/3

(η2 + ξ2)2/3 ≤ 4.2× 10−3.

If a0 = 104 ,then by (14)(
6πξ

a20

)4

≤ 7.9× 10−13,

(
6πξ

a20

)4

≤ 9.7× 10−11,

∣∣∣6π2

a40

(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)
∣∣∣ ≤ 3.2× 10−10,

45

(
π2

a40

)2(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)2 ≤ 6.5× 10−16,(
9π2

a40

)2/3

(η2 + ξ2)2/3 ≤ 2× 10−4,

If a0 = 105, then (
6πξ

a20

)4

≤ 7.9× 10−17,

(
6πξ

a20

)4

≤ 9.7× 10−15,

∣∣∣6π2

a40

(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)
∣∣∣ ≤ 1.5× 10−13,

45

(
π2

a40

)2(
9π2

a40

)2/3

(η2 + ξ2)2/3(η2 − ξ2)2 ≤ 3× 10−21,(
9π2

a40

)2/3

(η2 + ξ2)2/3 ≤ 9× 10−6.

In the polar coordinates ξ = r cosφ, η = r sinφ equation (13) becomes

∆u0(r, φ) +
1

r

∂u

∂r
+ λ2|C1|2

(
a40
9π2

)2/3

r−4/3u0(r, φ) = 0. (15)

By the separation of variables u0 = u1(r)u2(φ) from (15) we obtain

u′′1
u1

+
1

r

u′1
u1

+ λ20r
−4/3 = β, (16)

u′′2 + βu2 = 0,

where β ≥ 0 is some constant and
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λ20 = λ2|C1|2
(
a40
9π2

)2/3

.

Suppose ,φ ≤ ε0, ε
4
0 ≈ 0, then for β = 0, u2 = Aφ where A is some constant, which

will be calculated from the condition

ε0∫
0

a0/2∫
0

r |u|2 dφdr = 1. (17)

We can rewrite the first equation of (16) in the form

u′′1 +
1

r
u′1 + λ20r

−4/3 = 0. (18)

By the notation r1/3 = t , equation (18) becomes

u′′1 + t−1u′1 + 9λ20u1 = 0.

The solution of this equation is u1(t) = I0(3λ0t) and hence the solution of (18) will
be [5, 15]

u1(r) = I0(3λ0r
1/3), (19)

where I0 is Bessel’s function.
Consequently, we can calculate the spectrum of the equation (18)by the boundary

condition I0(3λ0(
a0
2
)1/3) = 0.

By using Maple and formulas (9) one obtains

∣∣∣ k−1∫
a

t−1/3(t2 − a2)−1/3(t2 − b2)−1/3dt
∣∣∣ = 0.342848,

|C| = |a3 − a2|/0.342848, |C1| = k2/3
|C|
C0

≈ 22/310−1/3 |a3 − a2|
a0

, (20)

λ2n =
λ20
|C1|

(
3π

a20

)4/3

= (10π2)2/3
c2n
62/3

a
−4/3
0

|a3 − a2|2
, n = 1, 2, 3, . . .

where cn are zeros of Bessel’s function I0[15]

cn ≈ 3π

4
+ nπ,

c1 ≈ 2.4, c2 ≈ 5.5, c3 ≈ 8.7, c4 ≈ 11.7, c5 ≈ 14.9, . . .

The constant A will be calculated from the formula (17)

ε0∫
0

a0/2∫
0

r |u|2 dφdr = A2 ε30/3

a0/2∫
0

r|I20 (3λ0r1/3)|2dr = 1.
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Note 1. As we have symmetry, then in the areaDb0−ε0 = {−a0/2 ≤ ξ ≤ a0/2,
b0 − ε0 ≤ η ≤ b0}the solutions of the Problem 2 will be the similar to the solutions of
equation (18).

Now, let us consider (11) in the area Dε near the line ξ = 0 with the conditions(
6πξ

a20

)2

≈ 0,

∫∫
Dε

|u|2dξdη = 1, (21)

where Dε = {−ε ≤ ξ ≤ ε; 0 ≤ η ≤ b0}, ε is sufficiently small. For example, if

ε = 10−4, a0 = 10−3, then
(

6πξ
a20

)2
≤ 4.10−18 .

By the conditions (21), (11) takes the form

th4/3
(
3πη

a20

)
∆u0(ξ, η) + λ2|C1|2u0(ξ, η) = 0. (22)

In (22) we can suppose th2
(

3πη
a20

)
≈
(

3πη
a20

)2
, then the equation (22) may be rewritten

as

∆u0(ξ, η) + λ2|C1|2
(
a20
3π

)4/3

η−4/3u0(ξ, η) = 0. (23)

By the separation of variables u0(ξ, η) = u1(ξ)u2(η) from (23) we obtain

∆u1(ξ) + βu1(ξ) = 0, β ≥ 0, (24)

∆u2(η) + (λ20η
−4/3 − β)u2(η) = 0, (25)

where

λ20 = λ2|C1|2
(
a20
3π

)4/3

. (26)

Here we suppose β = 0 , hence (24) gives u1 = B(a0/2 − ξ) (B is constant, which
will be determined from condition (21)). The solution of (25) will be represented in
terms of Bessel’s function I3/2 [5,15]

u1(η) =
√
ηI3/2(3λ0η

1/3), (27)

where

I
3/2

(3λ0η
1/3) =

√
2

π
(3λ0)

−3/2η−1/2 sin(3λ0η
1/3)−

√
2

π
(3λ0)

−1/2η−1/6 cos(3λ0η
1/3). (28)

(27)and (28) gives

u1(η) =

√
2

π
(3λ0)

−3/2
[
sin(3λ0η

1/3)− 3λ0η
1/3 cos(3λ0η

1/3)
]

The eigenvalues of Problem 2 will be found from the boundary condition

sin(3λ0(b0)
1/3)− 3λ0(b0)

1/3 cos(3λ0(b0)
1/3) = 0,
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where b0 =
5a0
3
.

Consequently, 3λ0(
5a0
3
)1/3 will be zeros of Bessel’s function I

3/2
(3λ0η

1/3) and the
spectrum of (25)could be determined by using Maple and formulas (20), (26),

3λ0(
5a0
3

)1/3 = dn,

λ2n =
λ20
|C1|

(
3π

a20

)4/3

= (10π2)2/3
d2n

202/3
a
−4/3
0

|a3 − a2|2
, n = 1, 2, 3, . . . (29)

where dn are zeros of Bessel’s function I
3/2

[15]

dn ≈ 3π

2
+ nπ

d1 ≈ 4.4934, d2 ≈ 7.7252, d3 ≈ 10.9041, d4 ≈ 14.0662, d5 ≈ 17.2208 . . .

The constant B will be calculated from the formula (21)

∫∫
Dε

|u|2dξdη = B2a
2
0ε

2

b0∫
0

η
[
I3/2(3λ0η

1/3)
]2
dη = 1. (30)

Note 2. The functions I0 and I3/2 have the following asymptotics [5,15]

Iν(3λ0r
1/3) ≈

√
2

3πλ0r1/3
cos
(
3λ0r

1/3 − ν
π

2
− π

4

)
, ν = 0, 3/2.

According to (13), (15), (19), (20), (23),(27),(29) we conclude.

Conclusion

1. Near the boundary η = 0 and η = b0 the solutions of the Problem 2 are given by

un1(ξ, η) = An1arctg
η

ξ
I0(3λ0(η

2 + ξ2)1/3), (31)

where

λ20 = λ2n1
|C1|2

(
a40
9π2

)2/3

, |C1| ≈ 22/310−1/3 |a3 − a2|
a0

,

λ2n1
= (10π2)4/3

c2n1

62/3
a
−4/3
0

|a3 − a2|2
, n1 = 1, 2, 3, . . . ,

(32)

λn1 is the spectrum of Problem 1 and cn1 are zeros of Bessel’s function I0, An1 are the
definite constants

A2
n1

= (3/ε30)

 a0/2∫
0

rI20 (3λ0r
1/3)dr

−1

. (33)

2. Near the line ξ = 0 the solutions of Problem 2 will be given by
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un2(ξ, η) = Bn2(a0/2ξ)
√
ηI3/2(3λ0η

1/3), (34)

where

λ20 = λ2n1
|C1|2

(
a40
9π2

)2/3

, |C1| ≈ 22/310−1/3 |a3 − a2|
a0

,

λ2n2
= (10π2)4/3

d2n2

202/3
a
−4/3
0

|a3 − a2|2
, n2 = 1, 2, 3, . . . ,

(35)

where λn2 is the spectrum of Problem 1, dn2 , n2 = 1, 2, 3, . . . , are zeros of Bassel’s
function I3/2,Bn2 are the definite constants

B2
n2

=

(
2

a20ε

) b0∫
0

η
[
I3/2(3λ0η

1/3)
]2
dη

−1

. (36)

The energy of the particle will be calculated from the formulas [2,14,16]

En1 = λ2n1

h2

2m
=

4.5× 102

3
(10π2)4/3

c2n1

62/3
a
−4/3
0

|a3 − a2|2
× 10−20, n1 = 1, 2, 3, . . . ,

En2 = λ2n2

h2

2m
=

4.5× 102

3
(10π2)4/3

d2n2

202/3
a
−4/3
0

|a3 − a2|2
× 10−20, n2 = 1, 2, 3, . . . ,

(37)

Below, on Table 1 the numerical results are given for |a3 − a2| = 10−10 by using
Maple

a0 = 104 ε λ20 |E|(eV)
c1 = 2.4 10−3 0.046745 A ≈

√
6× 10−1 0.553961

d1 = 4.49 10−6 0.073319 B ≈ 2× 10−8 0.8688876

Table 1.

Note 1. As f(w) is a holomorphic function, we can continue it through the sides
a2a3 and a6a5. Hence, we obtain the quantum billiard in the hexagonal rug (Fig.3).
Consequently, for this problem equation (5) will be valid. So, the solutions will be the
same as for the hexagon and given by formulas (31),(32), (33),(34),(35),(36), (37). The
boundary conditions will depend on the number of cells in the rug.

Also, we can continue f(w) through the sides a3a4,a4a5 and a6a1, a1a2. So we
obtain billiard in the hexagonal flower (Fig. 4), where energy levels of particles will be
calculated by formula (37).
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Fig. 3. The hexagonal rug

Fig. 4. Hexagonal flower

Note 2. Let us consider a half of the hexagon D′ = a1a2a3a4 (Fig.1). For this area
we can consider the following problem

Problem 3. To find a real function u(x0, y0) in D
′ having second order derivatives,

satisfying the equation
∆u(x0, y0) + λ2u(x0, y0) = 0,

and the boundary conditions

u
∣∣
a1a4

= 0, u
∣∣
a2a3

= 0,

where λ is the constant to be determined.
The function f(w) map the area D′ at the rectangle D′

0 with the vertexes (0, 0),
(a0/2, 0), (a0/2, b0), (0, b0). We can continue f(w) through the sides a1a2 and a3a4
(step by step)and obtain the mapping of the hexagon with the hexagonal hall at the
rectangle D′

0 = {0 ≤ ξ ≤ a0/2; 0 ≤ η ≤ 6b0} (Fig. 5). So we can consider the billiard
in the hexagon with the hexagonal hall. In this cases equation (11) will be valid. for
the area D′

ε = {0 ≤ ξ ≤ a0/2; 0 ≤ η ≤ ε}the equation (11) may be rewritten as

∆u0(ξ, η) + λ2|C1|2
(
a20
3π

)4/3

ξ−4/3u0(ξ, η) = 0,
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This equation can be solved in analogy with (23) with the boundary condition

I3/2(3λ0(a0/2)
1/3) = 0.

Near the line η = 0 we obtain the following solutions

un2(ξ, η) = Bn2

√
ξI3/2(3λ0ξ

1/3), n2 = 1, 2, 3, . . . ,

where λ0 and Bn2 are given by (35) and (36).

Fig. 5. Hexagon with the hexagonal hall

Note 3. By using the solutions of Problem 2 it is easy to obtain the solutions
of the same problem for the particle trapped in 3D potential box of the hexagonal
configuration D×{0 ≤ ζ ≤ c0} . This problem can be solved in analogy with Problem
2 and the solutions will be given by

U =

√
2

c0
un(ξ, η)sin

πn1

c0
, n, n1 = 1, 2, 3, . . . ,

where un(ξ, η) are given by (31),(32) or (34),(35) and corresponding energy eigenvalues
are given by

En = λ2n
h2

2m

n2
1

c20
, n, n1 = 1, 2, 3, . . .

Note 4. Problem 1 could also be applied for the description of the growth of the
single crystal of hexagonal configuration [12].

Discussion. The complete system of solutions of Problem 2 will be found if equa-
tion (11) or the equation

u′′1 + t−1u′1 + 9(λ20 − βt4)u1 = 0.

is solved globally.
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Example. Now we consider the electron transport in graphene and find energy
levels of the electron. “As an emergent electronic material and model system for
condensed-matter physics, graphene and its electrical transport properties have become
a subject of intense focus. By performing low-temperature transport spectroscopy on
single-layer and bilayer graphene, we observe ballistic propagation and quantum in-
terference of multiply reflected waves of charges from normal electrodes and multiple
Andreev reflections from superconducting electrodes, thereby realizing quantum bil-
liards in which scattering only occurs at the boundaries.”(“Phase-Coherent Transport
in Graphene Quantum Billiards” (Science, Vol. 317, Issue 5844, Pages 1530-1533,
2007).

Graphen is a one-atom thick sheet of carbon atoms arranged in hexagonal rings in
which scattering occurs at the boundaries. Hence, we can apply our results (Fig.3).
The width of the side of the hexagonal cell is about 0.14 × 10−10 [17, 21].As we have
billiard in the hexagonal rug, we can use formulas (31), (32), (33). Here we suppose,
that the rug has 7 cells and by using Maple we have obtained the following result
(Table 2)

a0 d ε λ20 A |E|(eV)
104 2.4 10−6 0.046745

√
2× 10−6 0.553961

Table 2.
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