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1. Introduction

A thermodynamic theory for materials with inner structure whose particles, in ad-
dition to the classical displacement and temperature fields, possess microtemperatures
was established by Grot [1]. The linear theory of thermoelasticity with microtem-
peratures was presented in [2], where the existence theorems were proved and the
continuous dependence of solutions of the initial data and body loads were established.
The fundamental solutions of the equations of the three-dimensional (3D) theory of
thermoelasticity with microtemperatures were constructed by Svanadze [3]. The rep-
resentations of the Galerkin type and general solutions of the system in this theory were
obtained by Scalia, Svanadze and Tracinà [4]. The 3D linear theory of thermoelasticity
for microstretch elastic materials with microtemperatures was constructed by Iesan [5],
where the uniqueness and existence theorems in the dynamical case for isotropic mate-
rials are proved. A wide class of external BVPs of steady vibrations is investigated by
Svanadze [6]. Effective solution of the Dirichlet and the Neumann BVPs of the linear
theory of thermoelasticity with microtemperatures for a spherical ring are obtained in
[7-8].

The two-dimensional model of thermoelasticity with microtemperatures is consid-
ered by Basheleishvili, Bitsadze and Jaiani in [9,10,11,12]. In particular, fundamental
and singular solutions of the system of equations of the equilibrium of the 2D thermoe-
lastisity theory with microtemperatures were constructed. Uniqueness and existence
theorems of some basic boundary value problems of the 2D thermoelasticity with mi-
crotemperatures are proved and the explicit solutions of boundary value problems for
the half-plane are constructed.

In the present paper the linear theory of thermoelasticity with microtemperatures is
considered. The representation of regular solution for the equations of steady vibrations
of the 3D theory of thermoelasticity with microtemperatures is obtained. We use it for
explicitly solving Dirichlet boundary value problem (BVP) of steady vibrations for an
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elastic space with spherical cavity. The obtained solutions are represented as absolutely
and uniformly convergent series.

2. Basic equations

We consider an isotropic elastic material with microtemperatures. Let us assume
that D+ is a ball, of radius R1, centered at point O(0, 0, 0) in space E3 and S is a spher-
ical surface of radius R1. Denote by D−-whole space with a spherical cavity. D+ :=

D+
∪
S, D− := E3\D+. Let x := (x1, x2, x3) ∈ E3, ∂x :=

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
.

The basic homogeneous system of equations of steady vibrations in the linear theory
of thermoelasticity with microtemperatures has the following form [2]

µ∆u+ (λ+ µ)graddivu− βgradθ + ϱω2u = 0 (1)

k6∆w+ (k4 + k5)graddivw− k3gradθ + k8w = 0 (2)

(k∆+ a0)θ + β0divu+ k1divw = 0 (3)

where u = (u1, u2)
T is the displacement vector, w = (w1, w2)

T is the microtemperature
vector, θ is the temperature measured from the constant absolute temperature
T0 (T0 > 0) by the natural state (i.e. by the state of the absence of loads), a0 =
iωaT0, β0 = iωβT0, k8 = ibω − k2, b > 0, a, λ, µ, β, k, kj, j =
1, ..., 6, are constitutive coefficients, ∆ is the 3D Laplace operator and ω is the oscilla-
tion frequency (ω > 0). The superscript “T ” denotes transposition.

We will suppose that the following assumptions on the constitutive coefficients hold [2]

µ > 0, 3λ+ 2µ > 0, a > 0, b > 0, k > 0,

3k4 + k5 + k6 > 0, k6 ± k5 > 0, (k1 + k3T0)
2 < 4T0kk2.

Definition 1. A vector-function U(U1, U2, U3, U4, U5, U6, U7) defined in the domain
D− is called regular if [6]

1.
U ∈ C2(D−) ∩ C1(D−),

2.

U =
5∑

j=1

U(j)(x), U (j) = (U
(j)
1 , U

(j)
2 , U

(j)
3 , U

(j)
4 , U

(j)
5 , U

(j)
6 , U

(j)
7 ),

U (j) ∈ C2(D−) ∩ C1(D−),

(4)

3.

(∆ + λ2j)U
(j)
l = 0, (5)

and (
∂

∂|x|
− iλj

)
U

(j)
l = eiλj |x|o(|x|−1), for |x| ≥ 1, (6)
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U (5)
m = U

(4)
7 = U

(5)
7 = 0, m = 1, 2, 3, j = 1, 2, .., 5, l = 1, 2, ..., 7,

where λ2j , j = 1, 2, 3 are roots of equation D(−ξ) = 0, where

D(∆) = (µ0∆+ ρω2)k1k3∆+ (k7∆+ k8)[ββ0∆+ (µ0∆+ ρω2)(k∆+ a0)],

λ21 + λ22 + λ23 =
1

µ0kk7

[
µ0(a0k7 + kk8 + k1k3) + ρω2kk7 + ββ0k7

]
,

λ21λ
2
2 + λ21λ

2
3 + λ22λ

2
3 =

1

µ0kk7

[
k8(µ0a0 + ββ0) + ρω2(a0k7 + kk8 + k1k3)

]
,

λ21λ
2
2λ

2
3 =

a0k8ρω
2

µ0kk7
=
a0µk6λ

2
4λ

2
5

µ0kk7
, µ0 = λ+ 2µ, k7 = k4 + k5 + k6,

the constants λ24 and λ25 are determined by the formulas

λ24 =
ρω2

µ
> 0, λ25 =

k8
k6
.

The quantities λ2j , j = 1, 2, 3, 5 are complex numbers and are chosen so as to
ensure positivity of their imaginary part, i.e. it is assumed that Imλ2j > 0.

Equations in (6) are Sommerfeld-Kupradze type radiation conditions in the linear
theory of thermoelastisity with microtemperatures.

The external Dirichlet BVP is formulated as follows:

Find in the unbounded domain D− a regular solution U(u,w, θ) of the equations
(1),(2),(3) by the boundary conditions

u− = F−(y), w− = f−(y), θ− = f−
7 (y), y ∈ S,

where F−(f1, f2, f3), f−(f4, f5, f6), f−
7 are prescribed functions on S.

The following theorem is valid [6].

Theorem 1. The external Dirichlet BVP admit at most one regular solution.

3. Expansion of regular solutions

The following theorem is valid [6].

Theorem 2. The regular solution U = (u,w, θ) ∈ C2(D−) of system (1-3) for
x ∈ D−, is represented as the sum

u =
4∑

j=1

u(j)(x), w =
∑

j=1,2,3,5

w(j)(x), θ =
3∑

j=1

θ(j), (7)
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where

u(j) =

[
4∏

l=1;l ̸=j

∆+ λ2l
λ2l − λ2j

]
u, j = 1, 2, 3, 4,

w(p) =

[ ∏
l=1,2,3,5

∆+ λ2l
λ2l − λ2p

]
w, l ̸= p, p = 1, 2, 3, 5,

θ(q) =

[
3∏

l=1

∆+ λ2l
λ2l − λ2q

]
θ, l ̸= q, q = 1, 2, 3.

(8)

u(j),w(j)and θ(j) are regular functions satisfying the following conditions

(∆ + λ2j)u
(j) = 0, (∆ + λ2l )w

(l) = 0, (∆ + λ2m)θ
(m) = 0,

j = 1, 2, 3, 4, l = 1, 2, 3, 5, m = 1, 2, 3.

Thus, the regular in D− solution of system (1-3) is represented as a sum of functions
u(j), w(j), θ(j), which satisfy Helmholtz’ equations in D−.

Lemma 1. In the domain of regularity the regular solution of system (1),(3) can
be represented in the form

u = a1gradφ1 + a2gradφ2 + a3gradφ3 + u(4),

w = b1gradφ1 + b2gradφ2 + b3gradφ3 +w(5),

θ = φ1 + φ2 + φ3,

(9)

where
(∆ + λ2j)φj = 0, j = 1, 2, 3, (∆ + λ24)u

(4) = 0,

divu(4) = 0, (∆ + λ25)w
(5) = 0, divw(5) = 0,

(10)

aj and bj, j = 1, 2, 3, are constants.
Proof. Replacing u, w and θ by their values from (8), and substituting

u, w, θ into (1),(3), after some calculations we obtain

(µ∆+ ρω2)(k7∆+ k8)(u
(1) + u(2) + u(3)) =

grad

[
−(λ+ µ)k1k3

β0
(λ21φ1 + λ22φ2 + λ23φ3) + β(k7∆+ k8)(φ1 + φ2 + φ3)

+
(λ+ µ)

β0
(k∆+ a0)(k7∆+ k8)(φ1 + φ2 + φ3)

]
.

(11)

Equation (11) is satisfied by

(µ∆+ ρω2)(k7∆+ k8)u
(1) =
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{
(λ+ µ)

β0
[(a0 − kλ21)(k8 − k7λ

2
1)− k1k3λ

2
1] + β(k8 − k7λ

2
1)

}
gradφ1,

(µ∆+ ρω2)(k7∆+ k8)u
(2) ={

(λ+ µ)

β0
[(a0 − kλ22)(k8 − k7λ

2
2)− k1k3λ

2
2] + β(k8 − k7λ

2
2)

}
gradφ2,

(µ∆+ ρω2)(k7∆+ k8)u
(3) ={

(λ+ µ)

β0
[(a0 − kλ23)(k8 − k7λ

2
3)− k1k3λ

2
3] + β(k8 − k7λ

2
3)

}
gradφ3.

last identity gives

u(1) = a1gradφ1, u(2) = a2gradφ2 u(3) = a3gradφ3 (12)

where

a1 =
β

µλ24 − µ0λ21
, a2 =

β

µλ24 − µ0λ22
, a3 =

β

µλ24 − µ0λ23
.

Similarly
w(1) = b1gradφ1, w(2) = b2gradφ2 w(3) = b3gradφ3,

where

b1 =
k3

k6λ25 − k7λ21
, b2 =

k3
k6λ25 − k7λ22

, b3 =
k3

k6λ25 − k7λ23
.

Thus

u = a1gradφ1 + a2gradφ2 + a3gradφ3 + u(4) =
3∑

j=1

ajgradφj + u(4),

w = b1gradφ1 + b2gradφ2 + b3gradφ3 +w(5) =
3∑

j=1

bjgradφj +w(5),

θ = φ1 + φ2 + φ3 =
3∑

j=1

φj,

(∆ + λ2j)φj = 0, j = 1, 2, 3, (∆ + λ24)u
(4) = 0,

divu(4) = 0, (∆ + λ25)w
(5) = 0, divw(5) = 0,

(13)

Now let us prove that if the vector U(u,w, θ) = 0, then φ1 = φ2 = φ3 = 0,
u(4) = w(5) = 0. It follows from (13) that

div[a1gradφ1 + a2gradφ2 + a3gradφ3 + u(4)] = 0,

div[b1gradφ1 + b2gradφ2 + b3gradφ3 +w(5)] = 0,

φ1(x) + φ2(x) + φ3(x) = 0.
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From these equations we obtain

a1λ
2
1φ1 + a2λ

2
2φ2 + a3λ

2
3φ3 = 0,

b1λ
2
1φ1 + b2λ

2
2φ2 + b3λ

2
3φ3 = 0,

φ1(x) + φ2(x) + φ3(x) = 0.

The determinant of this system is

D1 =
βk3µk6λ

2
4λ

2
5(λ

2
1 − λ22)(λ

2
1 − λ23)(λ

2
2 − λ23)(k6µ0λ

2
5 − k7µλ

2
4)

(ρω2 − µ0λ21)(ρω
2 − µ0λ22)(ρω

2 − µ0λ23)(k8 − k7λ21)(k8 − k7λ22)(k8 − k7λ23)
̸= 0.

Thus we have φ1 = φ2 = φ3 = 0, u(4) = 0, w(5) = 0 and the proof is completed.
We introduce the notations. If g(x) = g(g1, g2, g3) and q(x) = q(q1, q2, q3), then by

symbols (g.q) and [g.q] will be denoted scalar product and vector product respectively

(g.q) =
3∑

k=1

gkqk, [g.q] = (g2q3 − g3q2, g3q1 − g1q3, g1q2 − g2q1),

Let us consider the metaharmonic equation

(∆ + ν2)ψ = 0, Imν ̸= 0.

For this equation the following statements are valid and we cite them without proof.
Lemma 2. If the regular vector ψ satisfies the conditions

(∆ + ν2)ψ = 0, Imν ̸= 0, divψ = 0,

(x · ψ) = 0, x ∈ D+(orD−),

then it can be represented in the form

ψ(x) = [x · ∇]h(x),

where

(∆ + ν2)h(x) = 0, ∇ =

(
∂

∂x1
,
∂

∂x2
,
∂

∂x3

)
.

In addition if ∫
S(0,a)

h(x)ds = 0,

where S(0, a) ⊂ D+(orD−) is an arbitrary spherical surface of radius a, then between
the vector ψ and the function h there exists one-to-one correspondence.

Lemma 3. If the regular vector ψ satisfies the conditions

(∆ + λ2)ψ = 0, Imλ ̸= 0 divψ = 0, x ∈ D+(orD−),

then it can be represented in the form

ψ(x) = [x · ∇]φ3(x) + rot[x · ∇]φ4(x),
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where

(∆ + λ2)φj = 0, j = 3, 4.

In addition if ∫
S(0,a)

φjds = 0, j = 3, 4,

where S(0, a) ⊂ D+(orD−) is an arbitrary spherical surface of radius a, then between
the vector ψ and the functions φj, j = 1, .., 4, there exists one-to-one correspon-
dence.

Lemma 2 and Lemma 3 are proved in [13].

Lemma 2 and Lemma 3 lead to the following result.

Theorem 3. The vector U = (u,w, θ), is a regular solution of the homogeneous
equations (1),(3), in D+(orD−), if and only if, when it is represented in the form

u(x) =
3∑

j=1

aj gradφj +
µ

ρω2
rotψ3(x),

w(x) =
3∑

j=1

bjgradφj +
k6
k8

rotφ3(x),

θ(x) = φ1(x) + φ2(x) + φ3(x),

(14)

where

(∆ + λ24)ψ
3 = 0, divψ3 = 0,

(∆ + λ25)φ
3 = 0, divφ3 = 0,

ψ3(x) = [x · ∇]ψ3(x) + rot[x · ∇]ψ4(x),

φ3(x) = [x · ∇]φ4(x) + rot[x · ∇]φ5(x),

(15)

∫
S(0,a)

ψjds = 0, (∆ + λ24)ψj = 0, j = 3, 4,

∫
S(0,a)

φjds = 0, (∆ + λ25)φj = 0, j = 4, 5,

S(0, a) ⊂ D+(orD−) is an arbitrary spherical surface of radius a. Between the vector
U(x) = (u,w, θ) and the functions φj, ψj j = 1, .., 4, there exists one-to-one
correspondence.

Remark. By virtue of the equality

rotrot[x.∇]φ4 = −∆[x.∇]φ4,
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formula (14) can be written as

u(x) =
3∑

j=1

ajgradφj − [x · ∇]ψ4(x) +
µ

ρω2
rot[x · ∇]ψ3(x),

w(x) =
3∑

j=1

bjgradφj − [x · ∇]φ5(x) +
k6
k8

rot[x · ∇]φ4(x),

θ(x) = φ1(x) + φ2(x) + φ3(x).

(16)

Below we shall use solution (16) to solve the Dirichlet boundary value problem of steady
vibrations for an elastic space with spherical cavity.

4. Some auxiliary formulas

In the sequel we use the following notations: let us introduce the spherical coordi-
nates

x1 = ρ sinϑ cosφ, x2 = ρ sinϑ sinφ, x3 = ρ cosϑ,

y1 = R1 sinϑ0 cosφ0, y2 = R1 sinϑ0 sinφ0, y3 = R1 cosϑ0, y ∈ S,

ρ2 = x21 + x22 + x23, 0 ≤ ϑ ≤ π, 0 ≤ φ ≤ 2π 0 ≤ ρ ≤ R1.

(17)

The operator
∂

∂Sk(x)
is determined as follows

[x · ∇]k =
∂

∂Sk(x)
k = 1, 2, 3 x ∈ E3,

Simple calculations give

∂

∂S1(x)
= x2

∂

∂x3
− x3

∂

∂x2
= −cosφctgϑ ∂

∂φ
− sinφ

∂

∂ϑ
,

∂

∂S2(x)
= x3

∂

∂x1
− x1

∂

∂x3
= −sinφctgϑ ∂

∂φ
+ cosφ

∂

∂ϑ
,

∂

∂S3(x)
= x1

∂

∂x2
− x2

∂

∂x1
=

∂

∂φ
.

The following identities are true [13]

(x · rotg(x)) =
3∑

k=0

∂gk(x)

∂Sk(x)
,

3∑
k=0

∂

∂Sk(x)
(rot[x · ∇]h)k = 0,

3∑
k=0

∂

∂Sk(x)
(rotg(x))k = ρ

∂

∂ρ
divg(x)−

3∑
k=0

xk∆gk(x),
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3∑
k=0

∂

∂Sk(x)
[x · g]k = ρ2divg(x)− (x · g(x))− ρ

∂

∂ρ
(x · g(x)),

3∑
k=1

∂

∂Sk(x)
[x · rotg(x)]k = −(ρ

∂

∂ρ
+ 1)

3∑
k=0

∂gk(x)

∂Sk(x)
,

3∑
k=0

xk
∂

∂Sk(x)
= 0,

∂

∂Sk(x)

∂

∂xk
=

∂

∂xk

∂

∂Sk(x)
,

3∑
k=0

∂2

∂S2
k(x)

=
∂2

∂ϑ2
+ ctgϑ

∂

∂ϑ
+

1

sin2ϑ

∂2

∂φ2
,

∂xk
∂Sk

= 0,

3∑
k=0

∂

∂Sk(x)

∂

∂xk
= 0,

∂g(ρ)Y (ϑ, φ)

∂Sk(x)
= g(ρ)

∂Y (ϑ, φ)

∂Sk(x)
.

(18)

Let

(z · F−) = h−1 (z),
3∑

k=1

∂

∂Sk(z)
[z · F−]k = h−2 (z),

3∑
k=1

∂

∂Sk(z)
F−
k = h−3 (z),

(z · f−) = h−4 (z),
3∑

k=1

∂

∂Sk(z)
[z · f−]k = h−5 (z),

3∑
k=1

∂

∂Sk(z)
f−
k = h−6 (z), f−

7 = h−7 (z).

Let us assume that fk. k = 1, .., 7 are sufficiently smooth(differentiable) functions.
Let us expand the functions hk in spherical harmonics

h−k (z) =
∞∑

m=0

h−km(ϑ, φ),

where h−km is the spherical harmonic of order m :

h−km =
2m+ 1

4πR2
1

∫
S

Pm(cos γ)h
−
k (y)dSy,

Pm is Legendre polynomial of the m-th order, γ is an angle formed by the radius-vectors
Ox and Oy,

cos γ =
1

|x||y|

3∑
m=1

xkyk.

From these formulas it follows that if gm is the spherical harmonic the operator
∂

∂Sk

, k = 1, 2, 3, does not affect the order of the spherical function:

3∑
k=0

∂2gm(x)

∂S2
k(x)

= −m(m+ 1)gm(x).
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The general solutions of the equations (∆ + λ2k)ψ = 0, k = 1, 2, 3, 4, 5, in the
domain D− have the form [13]

ψ(x) =
∞∑

m=0

Ψ
(1)
m (λkρ)Ym(ϑ, φ), ρ > R1, (19)

where

Ψ
(1)
m (λkρ) =

√
R1H

(1)

m+ 1
2

(λkρ)

√
ρH

(1)

m+ 1
2

(λkR1)
.

5. The Dirichlet BVP for an infinite space with the spherical cavity

The solution of the Dirichlet BVP problem

u− = F−(f1, f2, f3), w− = f−(f4, f5, f6), θ− = f−
7

in the domain D− is sought in the form (16).

From (16) we get

(x · u) =
3∑

k=1

akρ
∂φk

∂ρ
+ c1

3∑
k=1

∂2ψ3

∂S2
k(x)

,

3∑
k=1

∂

∂Sk(x)
[x · u]k = a1

3∑
k=1

∂2φ1

∂S2
k(x)

+ a2

3∑
k=1

∂2φ2

∂S2
k(x)

+a3
3∑

k=1

∂2φ3

∂S2
k(x)

− c1(ρ
∂

∂ρ
+ 1)

3∑
k=1

∂2ψ3

∂S2
k(x)

,

3∑
k=1

∂uk
∂Sk(x)

=
3∑

k=1

∂2ψ4

∂S2
k(x)

, (x ·w) =
3∑

k=1

bkρ
∂φk

∂ρ
+ c2

3∑
k=1

∂2φ4

∂S2
k(x)

,

3∑
k=1

∂

∂Sk(x)
[x ·w]k = b1

3∑
k=1

∂2φ1

∂S2
k(x)

+ b2

3∑
k=1

∂2φ2

∂S2
k(x)

+b3
3∑

k=1

∂2φ3

∂S2
k(x)

− c2(ρ
∂

∂ρ
+ 1)

3∑
k=1

∂2φ4

∂S2
k(x)

,

3∑
k=1

∂wk

∂Sk(x)
=

3∑
k=1

∂2φ5

∂S2
k(x)

, θ =
3∑

k=1

φk, c1 =
1

λ24
, c2 =

1

λ25
.

(20)

Suppose the functions φm(x), m = 1, 2, 3, 4, 5, and ψj, j = 3, 4, are sought
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in the form

φk(x) =
∞∑

m=0

Ψ
(1)
m (λkρ)Ykm(ϑ, φ), k = 1, 2, 3,

φj(x) =
∞∑

m=0

Ψ
(1)
m (λ5ρ)Yjm(ϑ, φ), j = 4, 5,

ψj(x) =
∞∑

m=0

Ψ
(1)
m (λ4ρ)Zjm(ϑ, φ), j = 3, 4, ρ > R1,

(21)

where Ykm, and Zjm are the unknown spherical harmonic of order m,

Ψ(1)
m (λkρ) =

√
R1H

(1)

m+ 1
2

(λkρ)

√
ρH

(1)

m+ 1
2

(λkR1)
.

Remark. The conditions
∫

S(0,a)

ψjds = 0, j = 3, 4,
∫

S(0,a)

φjds = 0, j = 4, 5 in

fact mean that
Y40 = Y50 = Z30 = Z40 = 0.

Substituting the expressions of φm(x), m = 1, 2, 3, 4, 5 and ψj(x), j = 3, 4 in (20),
we obtain

(x · u) =
3∑

k=1

∞∑
m=0

akρ
∂

∂ρ
Ψ(1)

m (λkρ)Ykm − c1

∞∑
m=0

m(m+ 1)Ψ(1)
m (λ4ρ)Z3m,

3∑
k=1

∂

∂Sk(x)
[x · u]k =

∞∑
m=0

m(m+ 1)

{
−

3∑
k=1

akΨ
(1)
m (λkρ)Ykm + c1(ρ

∂

∂ρ
+ 1)Ψ(1)

m (λ4ρ)Z3m,

}
,

3∑
k=1

∂uk
∂Sk(x)

= −
∞∑

m=0

m(m+ 1)Ψ(1)
m (λ4ρ)Z4m,

(x ·w) =
3∑

k=1

∞∑
m=0

bkρ
∂

∂ρ
Ψ(1)

m (λkρ)Ykm − c2

∞∑
m=0

m(m+ 1)Ψ(1)
m (λ5ρ)Y4m,

3∑
k=1

∂

∂Sk(x)
[x ·w]k =

∞∑
m=0

m(m+ 1)

{
−

3∑
k=1

bkΨ
(1)
m (λkρ)Ykm + c2(ρ

∂

∂ρ
+ 1)Ψ(1)

m (λ5ρ)Y4m,

}
,

3∑
k=1

∂wk

∂Sk(x)
= −

∞∑
m=0

m(m+ 1)Ψ(1)
m (λ5ρ)Y5m, θ =

3∑
k=1

∞∑
m=0

Ψ(1)
m (λkρ)Ykm(ϑ, φ).

(22)
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Passing to the limit as ρ → R1 and taking into account boundary conditions for the
determination of Ymj and Zmj we obtain the system of algebraic equations

3∑
k=1

ak

[
ρ
∂

∂ρ
Ψ(1)

m (λkρ)

]
ρ=R1

Ykm − c1m(m+ 1)Z3m = h−1m,

m(m+ 1)

{
−

3∑
k=1

akYkm + c1

[
(ρ
∂

∂ρ
+ 1)Ψ(1)

m (λ4ρ)

]
ρ=R1

Z3m

}
= h−2m,

−m(m+ 1)Z4m = h−3m,

3∑
k=1

bk

[
ρ
∂

∂ρ
Ψ(1)

m (λkρ)

]
ρ=R1

Ykm − c2m(m+ 1)Y4m = h−4m,

m(m+ 1)

{
−

3∑
k=1

bkYkm + c2

[
(ρ
∂

∂ρ
+ 1)Ψ(1)

m (λ5ρ)

]
ρ=R1

Y4m,

}
= h−5m,

−m(m+ 1)Y5m = h−6m, Z40 = Y40 = Z30 = Y50 = 0,

Y1m + Y2m + Y3m = h−7m, h−30 = h−60 = h−20 = h−50 = 0. (23)

By virtue of Theorem 1 we conclude that the system (23) form ≥ 0 is uniquely solvable
and the functions Yjm and Zjm are possible to express by the known functions h−jm.

If we take into account the sufficient conditions of convergence of absolutely and
uniformly convergent series with respect to the spherical harmonic and the property
of functions Ψ

(1)
m (λkρ) we conclude that the obtained solutions are represented as ab-

solutely and uniformly convergent series.

R E F E R E N C E S

1. Grot R.A. Thermodynamics of a continuum with microtemperature. Int. J. Engng. Sci., 7
(1969), 801-814.

2. Iesan D., Quintanilla R. On a theory of thermoelasticity with microtemperatures. J. Thermal
Stresses, 23 (2000), 199-215.

3. Svanadze M. Fundamental solutions of the equations of the theory of thermoelasticity with
microtemperatures. J. of Thermal Stresses, 27 (2004), 151-170.
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