Seminar of I. Vekua Institute
 of Applied Mathematics
 REPORTS, Vol. 40, 2014

EFFECTIVE SOLUTION OF THE DIRICHLET BVP OF THERMOELASTICITY WITH MICROTEMPERATURES FOR AN ELASTIC SPACE WITH A SPHERICAL CAVITY

Bitsadze L.

Abstract

In the present paper the linear theory of thermoelasticity with microtemperatures is considered. The representation of regular solution for the equations of steady vibration of the 3D theory of thermoelasticity with microtemperatures is obtained. We use it for explicitly solving Dirichlet boundary value problem (BVP) for an elastic space with a spherical cavity. The obtained solutions are represented as absolutely and uniformly convergent series.

Keywords and phrases: Thermoelasticity with microtemperatures, absolutely and uniformly convergent series, spherical harmonic.

AMS subject classification (2010): 74F05, 74G05.

1. Introduction

A thermodynamic theory for materials with inner structure whose particles, in addition to the classical displacement and temperature fields, possess microtemperatures was established by Grot [1]. The linear theory of thermoelasticity with microtemperatures was presented in [2], where the existence theorems were proved and the continuous dependence of solutions of the initial data and body loads were established. The fundamental solutions of the equations of the three-dimensional (3D) theory of thermoelasticity with microtemperatures were constructed by Svanadze [3]. The representations of the Galerkin type and general solutions of the system in this theory were obtained by Scalia, Svanadze and Tracinà [4]. The 3D linear theory of thermoelasticity for microstretch elastic materials with microtemperatures was constructed by Iesan [5], where the uniqueness and existence theorems in the dynamical case for isotropic materials are proved. A wide class of external BVPs of steady vibrations is investigated by Svanadze [6]. Effective solution of the Dirichlet and the Neumann BVPs of the linear theory of thermoelasticity with microtemperatures for a spherical ring are obtained in [7-8].

The two-dimensional model of thermoelasticity with microtemperatures is considered by Basheleishvili, Bitsadze and Jaiani in [9,10,11,12]. In particular, fundamental and singular solutions of the system of equations of the equilibrium of the 2 D thermoelastisity theory with microtemperatures were constructed. Uniqueness and existence theorems of some basic boundary value problems of the 2D thermoelasticity with microtemperatures are proved and the explicit solutions of boundary value problems for the half-plane are constructed.

In the present paper the linear theory of thermoelasticity with microtemperatures is considered. The representation of regular solution for the equations of steady vibrations of the 3D theory of thermoelasticity with microtemperatures is obtained. We use it for explicitly solving Dirichlet boundary value problem (BVP) of steady vibrations for an
elastic space with spherical cavity. The obtained solutions are represented as absolutely and uniformly convergent series.

2. Basic equations

We consider an isotropic elastic material with microtemperatures. Let us assume that D^{+}is a ball, of radius R_{1}, centered at point $O(0,0,0)$ in space E_{3} and S is a spherical surface of radius R_{1}. Denote by D^{-}-whole space with a spherical cavity. $\overline{D^{+}}:=$ $D^{+} \cup S, \quad D^{-}:=E_{3} \backslash \overline{D^{+}}$. Let $\quad \mathbf{x}:=\left(x_{1}, x_{2}, x_{3}\right) \in E_{3}, \quad \partial \mathbf{x}:=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right)$.

The basic homogeneous system of equations of steady vibrations in the linear theory of thermoelasticity with microtemperatures has the following form [2]

$$
\begin{gather*}
\mu \Delta \mathbf{u}+(\lambda+\mu) \text { graddiv } \mathbf{u}-\beta g r a d \theta+\varrho \omega^{2} \mathbf{u}=0 \tag{1}\\
k_{6} \Delta \mathbf{w}+\left(k_{4}+k_{5}\right) \text { graddiv } \mathbf{w}-k_{3} g r a d \theta+k_{8} \mathbf{w}=0 \tag{2}\\
\left(k \Delta+a_{0}\right) \theta+\beta_{0} \operatorname{div} \mathbf{u}+k_{1} \operatorname{div} \mathbf{w}=0 \tag{3}
\end{gather*}
$$

where $\mathbf{u}=\left(u_{1}, u_{2}\right)^{T}$ is the displacement vector, $\mathbf{w}=\left(w_{1}, w_{2}\right)^{T}$ is the microtemperature vector, θ is the temperature measured from the constant absolute temperature $T_{0}\left(T_{0}>0\right)$ by the natural state (i.e. by the state of the absence of loads), $a_{0}=$ $i \omega a T_{0}, \quad \beta_{0}=i \omega \beta T_{0}, \quad k_{8}=i b \omega-k_{2}, \quad b>0, \quad a, \quad \lambda, \quad \mu, \quad \beta, \quad k, \quad k_{j}, \quad j=$ $1, \ldots, 6$, are constitutive coefficients, Δ is the 3D Laplace operator and ω is the oscillation frequency $(\omega>0)$. The superscript " T " denotes transposition.

We will suppose that the following assumptions on the constitutive coefficients hold [2]

$$
\begin{aligned}
& \mu>0, \quad 3 \lambda+2 \mu>0, \quad a>0, \quad b>0, \quad k>0 \\
& 3 k_{4}+k_{5}+k_{6}>0, \quad k_{6} \pm k_{5}>0, \quad\left(k_{1}+k_{3} T_{0}\right)^{2}<4 T_{0} k k_{2} .
\end{aligned}
$$

Definition 1. A vector-function $\mathbf{U}\left(U_{1}, U_{2}, U_{3}, U_{4}, U_{5}, U_{6}, U_{7}\right)$ defined in the domain D^{-}is called regular if [6]
1.

$$
\mathbf{U} \in C^{2}\left(D^{-}\right) \cap C^{1}\left(\overline{D^{-}}\right)
$$

2.

$$
\begin{align*}
& \mathbf{U}=\sum_{j=1}^{5} \mathbf{U}^{(j)}(\mathbf{x}), \quad U^{(j)}=\left(U_{1}^{(j)}, U_{2}^{(j)}, U_{3}^{(j)}, U_{4}^{(j)}, U_{5}^{(j)}, U_{6}^{(j)}, U_{7}^{(j)}\right), \tag{4}\\
& U^{(j)} \in C^{2}\left(D^{-}\right) \cap C^{1}\left(\overline{D^{-}}\right),
\end{align*}
$$

3.

$$
\begin{equation*}
\left(\Delta+\lambda_{j}^{2}\right) U_{l}^{(j)}=0 \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\frac{\partial}{\partial|\mathbf{x}|}-i \lambda_{j}\right) U_{l}^{(j)}=e^{i \lambda_{j}|\mathbf{x}|} o\left(|\mathbf{x}|^{-1}\right), \quad \text { for } \quad|\mathbf{x}| \geq 1 \tag{6}
\end{equation*}
$$

$$
U_{m}^{(5)}=U_{7}^{(4)}=U_{7}^{(5)}=0, \quad m=1,2,3, \quad j=1,2, . ., 5, \quad l=1,2, \ldots, 7,
$$

where $\lambda_{j}^{2}, \quad j=1,2,3$ are roots of equation $D(-\xi)=0$, where

$$
\begin{aligned}
& D(\Delta)=\left(\mu_{0} \Delta+\rho \omega^{2}\right) k_{1} k_{3} \Delta+\left(k_{7} \Delta+k_{8}\right)\left[\beta \beta_{0} \Delta+\left(\mu_{0} \Delta+\rho \omega^{2}\right)\left(k \Delta+a_{0}\right)\right], \\
& \lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}=\frac{1}{\mu_{0} k k_{7}}\left[\mu_{0}\left(a_{0} k_{7}+k k_{8}+k_{1} k_{3}\right)+\rho \omega^{2} k k_{7}+\beta \beta_{0} k_{7}\right], \\
& \lambda_{1}^{2} \lambda_{2}^{2}+\lambda_{1}^{2} \lambda_{3}^{2}+\lambda_{2}^{2} \lambda_{3}^{2}=\frac{1}{\mu_{0} k k_{7}}\left[k_{8}\left(\mu_{0} a_{0}+\beta \beta_{0}\right)+\rho \omega^{2}\left(a_{0} k_{7}+k k_{8}+k_{1} k_{3}\right)\right], \\
& \lambda_{1}^{2} \lambda_{2}^{2} \lambda_{3}^{2}=\frac{a_{0} k_{8} \rho \omega^{2}}{\mu_{0} k k_{7}}=\frac{a_{0} \mu k_{6} \lambda_{4}^{2} \lambda_{5}^{2}}{\mu_{0} k k_{7}}, \quad \mu_{0}=\lambda+2 \mu, \quad k_{7}=k_{4}+k_{5}+k_{6},
\end{aligned}
$$

the constants λ_{4}^{2} and λ_{5}^{2} are determined by the formulas

$$
\lambda_{4}^{2}=\frac{\rho \omega^{2}}{\mu}>0, \quad \lambda_{5}^{2}=\frac{k_{8}}{k_{6}} .
$$

The quantities $\lambda_{j}^{2}, \quad j=1,2,3,5$ are complex numbers and are chosen so as to ensure positivity of their imaginary part, i.e. it is assumed that $\operatorname{Im} \lambda_{j}^{2}>0$.

Equations in (6) are Sommerfeld-Kupradze type radiation conditions in the linear theory of thermoelastisity with microtemperatures.

The external Dirichlet BVP is formulated as follows:
Find in the unbounded domain D^{-}a regular solution $\mathbf{U}(\mathbf{u}, \mathbf{w}, \theta)$ of the equations (1),(2),(3) by the boundary conditions

$$
\mathbf{u}^{-}=\mathbf{F}^{-}(\mathbf{y}), \quad \mathbf{w}^{-}=\mathbf{f}^{-}(\mathbf{y}), \quad \theta^{-}=f_{7}^{-}(\mathbf{y}), \quad \mathbf{y} \in S
$$

where $\mathbf{F}^{-}\left(f_{1}, f_{2}, f_{3}\right), \mathbf{f}^{-}\left(f_{4}, f_{5}, f_{6}\right), f_{7}^{-}$are prescribed functions on S.
The following theorem is valid [6].
Theorem 1. The external Dirichlet BVP admit at most one regular solution.

3. Expansion of regular solutions

The following theorem is valid [6].
Theorem 2. The regular solution $\boldsymbol{U}=(\boldsymbol{u}, \boldsymbol{w}, \theta) \in C^{2}\left(D^{-}\right)$of system (1-3) for $\boldsymbol{x} \in D^{-}$, is represented as the sum

$$
\begin{equation*}
\mathbf{u}=\sum_{j=1}^{4} \mathbf{u}^{(j)}(\mathbf{x}), \quad \mathbf{w}=\sum_{j=1,2,3,5} \mathbf{w}^{(j)}(\mathbf{x}), \quad \theta=\sum_{j=1}^{3} \theta^{(j)} \tag{7}
\end{equation*}
$$

where

$$
\begin{align*}
& \mathbf{u}^{(j)}=\left[\prod_{l=1 ; l \neq j}^{4} \frac{\Delta+\lambda_{l}^{2}}{\lambda_{l}^{2}-\lambda_{j}^{2}}\right] \mathbf{u}, \quad j=1,2,3,4, \\
& \mathbf{w}^{(p)}=\left[\prod_{l=1,2,3,5} \frac{\Delta+\lambda_{l}^{2}}{\lambda_{l}^{2}-\lambda_{p}^{2}}\right] \mathbf{w}, \quad l \neq p, \quad p=1,2,3,5, \tag{8}\\
& \theta^{(q)}=\left[\prod_{l=1}^{3} \frac{\Delta+\lambda_{l}^{2}}{\lambda_{l}^{2}-\lambda_{q}^{2}}\right] \theta, \quad l \neq q, \quad q=1,2,3 .
\end{align*}
$$

$\mathbf{u}^{(j)}, \mathbf{w}^{(j)}$ and $\theta^{(j)}$ are regular functions satisfying the following conditions

$$
\begin{aligned}
& \left(\Delta+\lambda_{j}^{2}\right) \mathbf{u}^{(j)}=0, \quad\left(\Delta+\lambda_{l}^{2}\right) \mathbf{w}^{(l)}=0, \quad\left(\Delta+\lambda_{m}^{2}\right) \theta^{(m)}=0, \\
& j=1,2,3,4, \quad l=1,2,3,5, \quad m=1,2,3 .
\end{aligned}
$$

Thus, the regular in D^{-}solution of system (1-3) is represented as a sum of functions $\mathbf{u}^{(j)}, \quad \mathbf{w}^{(j)}, \quad \theta^{(j)}$, which satisfy Helmholtz' equations in D^{-}.

Lemma 1. In the domain of regularity the regular solution of system (1),(3) can be represented in the form

$$
\begin{align*}
& \mathbf{u}=a_{1} \operatorname{grad} \varphi_{1}+a_{2} \operatorname{grad} \varphi_{2}+a_{3} \operatorname{grad} \varphi_{3}+\mathbf{u}^{(4)}, \\
& \mathbf{w}=b_{1} \operatorname{grad} \varphi_{1}+b_{2} \operatorname{grad} \varphi_{2}+b_{3} \operatorname{grad} \varphi_{3}+\mathbf{w}^{(5)}, \tag{9}\\
& \theta=\varphi_{1}+\varphi_{2}+\varphi_{3},
\end{align*}
$$

where

$$
\begin{align*}
& \left(\Delta+\lambda_{j}^{2}\right) \varphi_{j}=0, \quad j=1,2,3, \quad\left(\Delta+\lambda_{4}^{2}\right) \mathbf{u}^{(4)}=0 \\
& \operatorname{div} \mathbf{u}^{(4)}=0, \quad\left(\Delta+\lambda_{5}^{2}\right) \mathbf{w}^{(5)}=0, \quad \operatorname{div} \mathbf{w}^{(5)}=0 \tag{10}
\end{align*}
$$

a_{j} and $b_{j}, \quad j=1,2,3$, are constants.
Proof. Replacing $\mathbf{u}, \quad \mathbf{w}$ and θ by their values from (8), and substituting $\mathbf{u}, \quad \mathbf{w}, \quad \theta$ into $(1),(3)$, after some calculations we obtain

$$
\begin{align*}
& \left(\mu \Delta+\rho \omega^{2}\right)\left(k_{7} \Delta+k_{8}\right)\left(\mathbf{u}^{(1)}+\mathbf{u}^{(2)}+\mathbf{u}^{(3)}\right)= \\
& \operatorname{grad}\left[-\frac{(\lambda+\mu) k_{1} k_{3}}{\beta_{0}}\left(\lambda_{1}^{2} \varphi_{1}+\lambda_{2}^{2} \varphi_{2}+\lambda_{3}^{2} \varphi_{3}\right)+\beta\left(k_{7} \Delta+k_{8}\right)\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)\right. \tag{11}\\
& \left.+\frac{(\lambda+\mu)}{\beta_{0}}\left(k \Delta+a_{0}\right)\left(k_{7} \Delta+k_{8}\right)\left(\varphi_{1}+\varphi_{2}+\varphi_{3}\right)\right] .
\end{align*}
$$

Equation (11) is satisfied by

$$
\left(\mu \Delta+\rho \omega^{2}\right)\left(k_{7} \Delta+k_{8}\right) \mathbf{u}^{(1)}=
$$

$$
\begin{aligned}
& \left\{\frac{(\lambda+\mu)}{\beta_{0}}\left[\left(a_{0}-k \lambda_{1}^{2}\right)\left(k_{8}-k_{7} \lambda_{1}^{2}\right)-k_{1} k_{3} \lambda_{1}^{2}\right]+\beta\left(k_{8}-k_{7} \lambda_{1}^{2}\right)\right\} \operatorname{grad} \varphi_{1}, \\
& \left(\mu \Delta+\rho \omega^{2}\right)\left(k_{7} \Delta+k_{8}\right) \mathbf{u}^{(2)}= \\
& \left\{\frac{(\lambda+\mu)}{\beta_{0}}\left[\left(a_{0}-k \lambda_{2}^{2}\right)\left(k_{8}-k_{7} \lambda_{2}^{2}\right)-k_{1} k_{3} \lambda_{2}^{2}\right]+\beta\left(k_{8}-k_{7} \lambda_{2}^{2}\right)\right\} \operatorname{grad} \varphi_{2}, \\
& \left(\mu \Delta+\rho \omega^{2}\right)\left(k_{7} \Delta+k_{8}\right) \mathbf{u}^{(3)}= \\
& \left\{\frac{(\lambda+\mu)}{\beta_{0}}\left[\left(a_{0}-k \lambda_{3}^{2}\right)\left(k_{8}-k_{7} \lambda_{3}^{2}\right)-k_{1} k_{3} \lambda_{3}^{2}\right]+\beta\left(k_{8}-k_{7} \lambda_{3}^{2}\right)\right\} \operatorname{grad} \varphi_{3} .
\end{aligned}
$$

last identity gives

$$
\begin{equation*}
\mathbf{u}^{(1)}=a_{1} \operatorname{grad} \varphi_{1}, \quad \mathbf{u}^{(2)}=a_{2} \operatorname{grad} \varphi_{2} \quad \mathbf{u}^{(3)}=a_{3} \operatorname{grad} \varphi_{3} \tag{12}
\end{equation*}
$$

where

$$
a_{1}=\frac{\beta}{\mu \lambda_{4}^{2}-\mu_{0} \lambda_{1}^{2}}, \quad a_{2}=\frac{\beta}{\mu \lambda_{4}^{2}-\mu_{0} \lambda_{2}^{2}}, \quad a_{3}=\frac{\beta}{\mu \lambda_{4}^{2}-\mu_{0} \lambda_{3}^{2}} .
$$

Similarly

$$
\mathbf{w}^{(1)}=b_{1} \operatorname{grad} \varphi_{1}, \quad \mathbf{w}^{(2)}=b_{2} \operatorname{grad} \varphi_{2} \quad \mathbf{w}^{(3)}=b_{3} \operatorname{grad} \varphi_{3},
$$

where

$$
b_{1}=\frac{k_{3}}{k_{6} \lambda_{5}^{2}-k_{7} \lambda_{1}^{2}}, \quad b_{2}=\frac{k_{3}}{k_{6} \lambda_{5}^{2}-k_{7} \lambda_{2}^{2}}, \quad b_{3}=\frac{k_{3}}{k_{6} \lambda_{5}^{2}-k_{7} \lambda_{3}^{2}} .
$$

Thus

$$
\begin{align*}
& \mathbf{u}=a_{1} \operatorname{grad} \varphi_{1}+a_{2} g r a d \varphi_{2}+a_{3} \operatorname{grad} \varphi_{3}+\mathbf{u}^{(4)}=\sum_{j=1}^{3} a_{j} \operatorname{grad} \varphi_{j}+\mathbf{u}^{(4)}, \\
& \mathbf{w}=b_{1} \operatorname{grad} \varphi_{1}+b_{2} g r a d \varphi_{2}+b_{3} \operatorname{grad} \varphi_{3}+\mathbf{w}^{(5)}=\sum_{j=1}^{3} b_{j} \operatorname{grad} \varphi_{j}+\mathbf{w}^{(5)}, \\
& \theta=\varphi_{1}+\varphi_{2}+\varphi_{3}=\sum_{j=1}^{3} \varphi_{j}, \tag{13}\\
& \left(\Delta+\lambda_{j}^{2}\right) \varphi_{j}=0, \quad j=1,2,3, \quad\left(\Delta+\lambda_{4}^{2}\right) \mathbf{u}^{(4)}=0, \\
& \operatorname{div} \mathbf{u}^{(4)}=0, \quad\left(\Delta+\lambda_{5}^{2}\right) \mathbf{w}^{(5)}=0, \quad \operatorname{div} \mathbf{w}^{(5)}=0
\end{align*}
$$

Now let us prove that if the vector $\mathbf{U}(\mathbf{u}, \mathbf{w}, \theta)=0$, then $\varphi_{1}=\varphi_{2}=\varphi_{3}=0$, $\mathbf{u}^{(4)}=\mathbf{w}^{(5)}=0$. It follows from (13) that

$$
\begin{gathered}
\operatorname{div}\left[a_{1} \operatorname{grad} \varphi_{1}+a_{2} \operatorname{grad} \varphi_{2}+a_{3} \operatorname{grad} \varphi_{3}+\mathbf{u}^{(4)}\right]=0, \\
\operatorname{div}\left[b_{1} \operatorname{grad} \varphi_{1}+b_{2} g r a d \varphi_{2}+b_{3} \operatorname{grad} \varphi_{3}+\mathbf{w}^{(5)}\right]=0, \\
\varphi_{1}(\mathbf{x})+\varphi_{2}(\mathbf{x})+\varphi_{3}(\mathbf{x})=0 .
\end{gathered}
$$

From these equations we obtain

$$
\begin{gathered}
a_{1} \lambda_{1}^{2} \varphi_{1}+a_{2} \lambda_{2}^{2} \varphi_{2}+a_{3} \lambda_{3}^{2} \varphi_{3}=0 \\
b_{1} \lambda_{1}^{2} \varphi_{1}+b_{2} \lambda_{2}^{2} \varphi_{2}+b_{3} \lambda_{3}^{2} \varphi_{3}=0 \\
\varphi_{1}(\mathbf{x})+\varphi_{2}(\mathbf{x})+\varphi_{3}(\mathbf{x})=0
\end{gathered}
$$

The determinant of this system is

$$
D_{1}=\frac{\beta k_{3} \mu k_{6} \lambda_{4}^{2} \lambda_{5}^{2}\left(\lambda_{1}^{2}-\lambda_{2}^{2}\right)\left(\lambda_{1}^{2}-\lambda_{3}^{2}\right)\left(\lambda_{2}^{2}-\lambda_{3}^{2}\right)\left(k_{6} \mu_{0} \lambda_{5}^{2}-k_{7} \mu \lambda_{4}^{2}\right)}{\left(\rho \omega^{2}-\mu_{0} \lambda_{1}^{2}\right)\left(\rho \omega^{2}-\mu_{0} \lambda_{2}^{2}\right)\left(\rho \omega^{2}-\mu_{0} \lambda_{3}^{2}\right)\left(k_{8}-k_{7} \lambda_{1}^{2}\right)\left(k_{8}-k_{7} \lambda_{2}^{2}\right)\left(k_{8}-k_{7} \lambda_{3}^{2}\right)} \neq 0 .
$$

Thus we have $\varphi_{1}=\varphi_{2}=\varphi_{3}=0, \quad \mathbf{u}^{(4)}=0, \quad \mathbf{w}^{(5)}=0$ and the proof is completed.
We introduce the notations. If $\mathbf{g}(\mathbf{x})=\mathbf{g}\left(g_{1}, g_{2}, g_{3}\right)$ and $\mathbf{q}(\mathbf{x})=\mathbf{q}\left(q_{1}, q_{2}, q_{3}\right)$, then by symbols (g.q) and [g.q] will be denoted scalar product and vector product respectively

$$
(\mathbf{g} \cdot \mathbf{q})=\sum_{k=1}^{3} g_{k} q_{k}, \quad[\mathbf{g} \cdot \mathbf{q}]=\left(g_{2} q_{3}-g_{3} q_{2}, g_{3} q_{1}-g_{1} q_{3}, g_{1} q_{2}-g_{2} q_{1}\right),
$$

Let us consider the metaharmonic equation

$$
\left(\Delta+\nu^{2}\right) \psi=0, \quad \operatorname{Im} \nu \neq 0 .
$$

For this equation the following statements are valid and we cite them without proof.
Lemma 2. If the regular vector ψ satisfies the conditions

$$
\begin{gathered}
\left(\Delta+\nu^{2}\right) \psi=0, \quad \operatorname{Im} \nu \neq 0, \quad \operatorname{div} \psi=0 \\
(\mathbf{x} \cdot \psi)=0, \quad \mathbf{x} \in D^{+}\left(\text {or } D^{-}\right),
\end{gathered}
$$

then it can be represented in the form

$$
\psi(\mathbf{x})=[\mathbf{x} \cdot \nabla] h(\mathbf{x}),
$$

where

$$
\left(\Delta+\nu^{2}\right) h(\mathbf{x})=0, \quad \nabla=\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \frac{\partial}{\partial x_{3}}\right) .
$$

In addition if

$$
\int_{S(0, a)} h(\mathbf{x}) d s=0,
$$

where $S(0, a) \subset D^{+}\left(\right.$or $\left.D^{-}\right)$is an arbitrary spherical surface of radius a, then between the vector ψ and the function h there exists one-to-one correspondence.

Lemma 3. If the regular vector ψ satisfies the conditions

$$
\left(\Delta+\lambda^{2}\right) \psi=0, \quad \operatorname{Im} \lambda \neq 0 \quad \operatorname{div} \psi=0, \quad \mathbf{x} \in D^{+}\left(o r D^{-}\right)
$$

then it can be represented in the form

$$
\psi(\mathbf{x})=[\mathrm{x} \cdot \nabla] \varphi_{3}(\mathrm{x})+\operatorname{rot}[\mathrm{x} \cdot \nabla] \varphi_{4}(\mathrm{x})
$$

where

$$
\left(\Delta+\lambda^{2}\right) \varphi_{j}=0, \quad j=3,4
$$

In addition if

$$
\int_{S(0, a)} \varphi_{j} d s=0, \quad j=3,4,
$$

where $S(0, a) \subset D^{+}\left(\right.$or $\left.D^{-}\right)$is an arbitrary spherical surface of radius a, then between the vector ψ and the functions $\varphi_{j}, \quad j=1, . ., 4$, there exists one-to-one correspondence.

Lemma 2 and Lemma 3 are proved in [13].
Lemma 2 and Lemma 3 lead to the following result.
Theorem 3. The vector $\boldsymbol{U}=(\boldsymbol{u}, \boldsymbol{w}, \theta)$, is a regular solution of the homogeneous equations (1),(3), in $D^{+}\left(\right.$or $\left.D^{-}\right)$, if and only if, when it is represented in the form

$$
\begin{align*}
& \mathbf{u}(\mathbf{x})=\sum_{j=1}^{3} a_{j} \operatorname{grad} \varphi_{j}+\frac{\mu}{\rho \omega^{2}} \operatorname{rot} \psi^{3}(\mathbf{x}), \\
& \mathbf{w}(\mathbf{x})=\sum_{j=1}^{3} b_{j} \operatorname{grad} \varphi_{j}+\frac{k_{6}}{k_{8}} \operatorname{rot} \varphi^{3}(\mathbf{x}) \tag{14}\\
& \theta(\mathbf{x})=\varphi_{1}(\mathbf{x})+\varphi_{2}(\mathbf{x})+\varphi_{3}(\mathbf{x})
\end{align*}
$$

where

$$
\begin{align*}
& \left(\Delta+\lambda_{4}^{2}\right) \psi^{3}=0, \quad \operatorname{div} \psi^{3}=0, \\
& \left(\Delta+\lambda_{5}^{2}\right) \varphi^{3}=0, \quad \operatorname{div} \varphi^{3}=0, \\
& \psi^{3}(\mathbf{x})=[\mathbf{x} \cdot \nabla] \psi_{3}(\mathbf{x})+\operatorname{rot}[\mathbf{x} \cdot \nabla] \psi_{4}(\mathbf{x}), \tag{15}\\
& \varphi^{3}(\mathbf{x})=[\mathbf{x} \cdot \nabla] \varphi_{4}(\mathbf{x})+\operatorname{rot}[\mathbf{x} \cdot \nabla] \varphi_{5}(\mathbf{x}), \\
& \int_{S(0, a)} \psi_{j} d s=0, \quad\left(\Delta+\lambda_{4}^{2}\right) \psi_{j}=0, \quad j=3,4, \\
& \int_{S(0, a)} \varphi_{j} d s=0, \quad\left(\Delta+\lambda_{5}^{2}\right) \varphi_{j}=0, \quad j=4,5,
\end{align*}
$$

$S(0, a) \subset D^{+}\left(\right.$or $\left.D^{-}\right)$is an arbitrary spherical surface of radius a. Between the vector $\boldsymbol{U}(\boldsymbol{x})=(\boldsymbol{u}, \boldsymbol{w}, \theta)$ and the functions $\varphi_{j}, \quad \psi_{j} j=1, . ., 4$, there exists one-to-one correspondence.

Remark. By virtue of the equality

$$
\operatorname{rotrot}[x . \nabla] \varphi_{4}=-\Delta[x . \nabla] \varphi_{4},
$$

formula (14) can be written as

$$
\begin{align*}
& \mathbf{u}(\mathbf{x})=\sum_{j=1}^{3} a_{j} \operatorname{grad} \varphi_{j}-[\mathbf{x} \cdot \nabla] \psi_{4}(\mathbf{x})+\frac{\mu}{\rho \omega^{2}} \operatorname{rot}[\mathbf{x} \cdot \nabla] \psi_{3}(\mathbf{x}), \\
& \mathbf{w}(\mathbf{x})=\sum_{j=1}^{3} b_{j} \operatorname{grad} \varphi_{j}-[\mathbf{x} \cdot \nabla] \varphi_{5}(\mathbf{x})+\frac{k_{6}}{k_{8}} \operatorname{rot}[\mathbf{x} \cdot \nabla] \varphi_{4}(\mathbf{x}), \tag{16}\\
& \theta(\mathbf{x})=\varphi_{1}(\mathbf{x})+\varphi_{2}(\mathbf{x})+\varphi_{3}(\mathbf{x}) .
\end{align*}
$$

Below we shall use solution (16) to solve the Dirichlet boundary value problem of steady vibrations for an elastic space with spherical cavity.

4. Some auxiliary formulas

In the sequel we use the following notations: let us introduce the spherical coordinates

$$
\begin{align*}
& x_{1}=\rho \sin \vartheta \cos \varphi, \quad x_{2}=\rho \sin \vartheta \sin \varphi, \quad x_{3}=\rho \cos \vartheta, \\
& y_{1}=R_{1} \sin \vartheta_{0} \cos \varphi_{0}, \quad y_{2}=R_{1} \sin \vartheta_{0} \sin \varphi_{0}, \quad y_{3}=R_{1} \cos \vartheta_{0}, \quad y \in S, \tag{17}\\
& \rho^{2}=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}, \quad 0 \leq \vartheta \leq \pi, \quad 0 \leq \varphi \leq 2 \pi \quad 0 \leq \rho \leq R_{1} .
\end{align*}
$$

The operator $\frac{\partial}{\partial S_{k}(\mathbf{x})}$ is determined as follows

$$
[\mathbf{x} \cdot \nabla]_{k}=\frac{\partial}{\partial S_{k}(\mathbf{x})} \quad k=1,2,3 \quad \mathbf{x} \in E_{3},
$$

Simple calculations give

$$
\begin{aligned}
\frac{\partial}{\partial S_{1}(\mathbf{x})} & =x_{2} \frac{\partial}{\partial x_{3}}-x_{3} \frac{\partial}{\partial x_{2}}=-\cos \varphi \operatorname{ctg} \vartheta \frac{\partial}{\partial \varphi}-\sin \varphi \frac{\partial}{\partial \vartheta}, \\
\frac{\partial}{\partial S_{2}(\mathbf{x})} & =x_{3} \frac{\partial}{\partial x_{1}}-x_{1} \frac{\partial}{\partial x_{3}}=-\sin \varphi \operatorname{ctg} \vartheta \frac{\partial}{\partial \varphi}+\cos \varphi \frac{\partial}{\partial \vartheta}, \\
\frac{\partial}{\partial S_{3}(\mathbf{x})} & =x_{1} \frac{\partial}{\partial x_{2}}-x_{2} \frac{\partial}{\partial x_{1}}=\frac{\partial}{\partial \varphi} .
\end{aligned}
$$

The following identities are true [13]

$$
\begin{aligned}
& (\mathbf{x} \cdot \operatorname{rotg}(\mathbf{x}))=\sum_{k=0}^{3} \frac{\partial g_{k}(\mathbf{x})}{\partial S_{k}(\mathbf{x})}, \quad \sum_{k=0}^{3} \frac{\partial}{\partial S_{k}(\mathbf{x})}(\operatorname{rot}[\mathbf{x} \cdot \nabla] h)_{k}=0, \\
& \sum_{k=0}^{3} \frac{\partial}{\partial S_{k}(\mathbf{x})}(\operatorname{rot} \mathbf{g}(\mathbf{x}))_{k}=\rho \frac{\partial}{\partial \rho} \operatorname{div} \mathbf{g}(\mathbf{x})-\sum_{k=0}^{3} x_{k} \Delta \mathbf{g}_{k}(\mathbf{x}),
\end{aligned}
$$

$$
\begin{align*}
& \sum_{k=0}^{3} \frac{\partial}{\partial S_{k}(\mathbf{x})}[\mathbf{x} \cdot \mathbf{g}]_{k}=\rho^{2} \operatorname{div} \mathbf{g}(\mathbf{x})-(\mathbf{x} \cdot \mathbf{g}(\mathbf{x}))-\rho \frac{\partial}{\partial \rho}(\mathbf{x} \cdot \mathbf{g}(\mathbf{x})), \\
& \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(\mathbf{x})}[\mathbf{x} \cdot \operatorname{rot} \mathbf{g}(\mathbf{x})]_{k}=-\left(\rho \frac{\partial}{\partial \rho}+1\right) \sum_{k=0}^{3} \frac{\partial g_{k}(\mathbf{x})}{\partial S_{k}(\mathbf{x})} \\
& \sum_{k=0}^{3} x_{k} \frac{\partial}{\partial S_{k}(\mathbf{x})}=0, \quad \frac{\partial}{\partial S_{k}(\mathbf{x})} \frac{\partial}{\partial x_{k}}=\frac{\partial}{\partial x_{k}} \frac{\partial}{\partial S_{k}(\mathbf{x})} \tag{18}\\
& \sum_{k=0}^{3} \frac{\partial^{2}}{\partial S_{k}^{2}(\mathbf{x})}=\frac{\partial^{2}}{\partial \vartheta^{2}}+\operatorname{ctg\vartheta } \frac{\partial}{\partial \vartheta}+\frac{1}{\sin ^{2} \vartheta} \frac{\partial^{2}}{\partial \varphi^{2}}, \quad \frac{\partial x_{k}}{\partial S_{k}}=0 \\
& \sum_{k=0}^{3} \frac{\partial}{\partial S_{k}(\mathbf{x})} \frac{\partial}{\partial x_{k}}=0, \quad \frac{\partial g(\rho) Y(\vartheta, \varphi)}{\partial S_{k}(\mathbf{x})}=g(\rho) \frac{\partial Y(\vartheta, \varphi)}{\partial S_{k}(\mathbf{x})}
\end{align*}
$$

Let

$$
\begin{aligned}
& \left(\mathbf{z} \cdot \mathbf{F}^{-}\right)=h_{1}^{-}(\mathbf{z}), \quad \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(\mathbf{z})}\left[\mathbf{z} \cdot \mathbf{F}^{-}\right]_{k}=h_{2}^{-}(\mathbf{z}), \quad \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(\mathbf{z})} F_{k}^{-}=h_{3}^{-}(\mathbf{z}), \\
& \left(\mathbf{z} \cdot \mathbf{f}^{-}\right)=h_{4}^{-}(\mathbf{z}), \quad \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(\mathbf{z})}\left[\mathbf{z} \cdot \mathbf{f}^{-}\right]_{k}=h_{5}^{-}(\mathbf{z}), \quad \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(\mathbf{z})} f_{k}^{-}=h_{6}^{-}(\mathbf{z}), \quad f_{7}^{-}=h_{7}^{-}(\mathbf{z}) .
\end{aligned}
$$

Let us assume that f_{k}. $k=1, . ., 7$ are sufficiently smooth(differentiable) functions. Let us expand the functions h_{k} in spherical harmonics

$$
h_{k}^{-}(\mathbf{z})=\sum_{m=0}^{\infty} h_{k m}^{-}(\vartheta, \varphi),
$$

where $h_{k m}^{-}$is the spherical harmonic of order m :

$$
h_{k m}^{-}=\frac{2 m+1}{4 \pi R_{1}^{2}} \int_{S} P_{m}(\cos \gamma) h_{k}^{-}(\mathbf{y}) d S_{y}
$$

P_{m} is Legendre polynomial of the m -th order, γ is an angle formed by the radius-vectors $O x$ and $O y$,

$$
\cos \gamma=\frac{1}{|\mathbf{x}||\mathbf{y}|} \sum_{m=1}^{3} x_{k} y_{k}
$$

From these formulas it follows that if g_{m} is the spherical harmonic the operator $\frac{\partial}{\partial S_{k}}, \quad k=1,2,3$, does not affect the order of the spherical function:

$$
\sum_{k=0}^{3} \frac{\partial^{2} g_{m}(\mathbf{x})}{\partial S_{k}^{2}(\mathbf{x})}=-m(m+1) g_{m}(\mathbf{x})
$$

The general solutions of the equations $\left(\Delta+\lambda_{k}^{2}\right) \psi=0, \quad k=1,2,3,4,5$, in the domain D^{-}have the form [13]

$$
\begin{equation*}
\psi(x)=\sum_{m=0}^{\infty} \Psi_{m}^{(1)}\left(\lambda_{k} \rho\right) Y_{m}(\vartheta, \varphi), \quad \rho>R_{1}, \tag{19}
\end{equation*}
$$

where

$$
\Psi_{m}^{(1)}\left(\lambda_{k} \rho\right)=\frac{\sqrt{R_{1}} H_{m+\frac{1}{2}}^{(1)}\left(\lambda_{k} \rho\right)}{\sqrt{\rho} H_{m+\frac{1}{2}}^{(1)}\left(\lambda_{k} R_{1}\right)} .
$$

5. The Dirichlet BVP for an infinite space with the spherical cavity

The solution of the Dirichlet BVP problem

$$
\mathbf{u}^{-}=\mathbf{F}^{-}\left(f_{1}, f_{2}, f_{3}\right), \quad \mathbf{w}^{-}=\mathbf{f}^{-}\left(f_{4}, f_{5}, f_{6}\right), \quad \theta^{-}=f_{7}^{-}
$$

in the domain D^{-}is sought in the form (16).
From (16) we get

$$
\begin{align*}
& (\mathbf{x} \cdot \mathbf{u})=\sum_{k=1}^{3} a_{k} \rho \frac{\partial \varphi_{k}}{\partial \rho}+c_{1} \sum_{k=1}^{3} \frac{\partial^{2} \psi_{3}}{\partial S_{k}^{2}(\mathbf{x})}, \\
& \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(\mathbf{x})}[\mathbf{x} \cdot \mathbf{u}]_{k}=a_{1} \sum_{k=1}^{3} \frac{\partial^{2} \varphi_{1}}{\partial S_{k}^{2}(\mathbf{x})}+a_{2} \sum_{k=1}^{3} \frac{\partial^{2} \varphi_{2}}{\partial S_{k}^{2}(\mathbf{x})} \\
& +a_{3} \sum_{k=1}^{3} \frac{\partial^{2} \varphi_{3}}{\partial S_{k}^{2}(\mathbf{x})}-c_{1}\left(\rho \frac{\partial}{\partial \rho}+1\right) \sum_{k=1}^{3} \frac{\partial^{2} \psi_{3}}{\partial S_{k}^{2}(\mathbf{x})}, \\
& \sum_{k=1}^{3} \frac{\partial u_{k}}{\partial S_{k}(\mathbf{x})}=\sum_{k=1}^{3} \frac{\partial^{2} \psi_{4}}{\partial S_{k}^{2}(\mathbf{x})}, \quad(\mathbf{x} \cdot \mathbf{w})=\sum_{k=1}^{3} b_{k} \rho \frac{\partial \varphi_{k}}{\partial \rho}+c_{2} \sum_{k=1}^{3} \frac{\partial^{2} \varphi_{4}}{\partial S_{k}^{2}(\mathbf{x})}, \tag{20}\\
& \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(\mathbf{x})}[\mathbf{x} \cdot \mathbf{w}]_{k}=b_{1} \sum_{k=1}^{3} \frac{\partial^{2} \varphi_{1}}{\partial S_{k}^{2}(\mathbf{x})}+b_{2} \sum_{k=1}^{3} \frac{\partial^{2} \varphi_{2}}{\partial S_{k}^{2}(\mathbf{x})} \\
& +b_{3} \sum_{k=1}^{3} \frac{\partial^{2} \varphi_{3}}{\partial S_{k}^{2}(\mathbf{x})}-c_{2}\left(\rho \frac{\partial}{\partial \rho}+1\right) \sum_{k=1}^{3} \frac{\partial^{2} \varphi_{4}}{\partial S_{k}^{2}(\mathbf{x})}, \\
& \sum_{k=1}^{3} \frac{\partial w_{k}}{\partial S_{k}(\mathbf{x})}=\sum_{k=1}^{3} \frac{\partial^{2} \varphi_{5}}{\partial S_{k}^{2}(\mathbf{x})}, \quad \theta=\sum_{k=1}^{3} \varphi_{k}, \quad c_{1}=\frac{1}{\lambda_{4}^{2}}, \quad c_{2}=\frac{1}{\lambda_{5}^{2}} .
\end{align*}
$$

Suppose the functions $\varphi_{m}(\mathbf{x}), \quad m=1,2,3,4,5, \quad$ and $\quad \psi_{j}, \quad j=3,4$, are sought
in the form

$$
\begin{align*}
& \varphi_{k}(\mathbf{x})=\sum_{m=0}^{\infty} \Psi_{m}^{(1)}\left(\lambda_{k} \rho\right) Y_{k m}(\vartheta, \varphi), \quad k=1,2,3, \\
& \varphi_{j}(\mathbf{x})=\sum_{m=0}^{\infty} \Psi_{m}^{(1)}\left(\lambda_{5} \rho\right) Y_{j m}(\vartheta, \varphi), \quad j=4,5 \tag{21}\\
& \psi_{j}(\mathbf{x})=\sum_{m=0}^{\infty} \Psi_{m}^{(1)}\left(\lambda_{4} \rho\right) Z_{j m}(\vartheta, \varphi), \quad j=3,4, \quad \rho>R_{1},
\end{align*}
$$

where $Y_{k m}$, and $Z_{j m}$ are the unknown spherical harmonic of order m,

$$
\Psi_{m}^{(1)}\left(\lambda_{k} \rho\right)=\frac{\sqrt{R_{1}} H_{m+\frac{1}{2}}^{(1)}\left(\lambda_{k} \rho\right)}{\sqrt{\rho} H_{m+\frac{1}{2}}^{(1)}\left(\lambda_{k} R_{1}\right)} .
$$

Remark. The conditions $\int_{S(0, a)} \psi_{j} d s=0, \quad j=3,4, \int_{S(0, a)} \varphi_{j} d s=0, \quad j=4,5$ in fact mean that

$$
Y_{40}=Y_{50}=Z_{30}=Z_{40}=0
$$

Substituting the expressions of $\varphi_{m}(x), \quad m=1,2,3,4,5$ and $\psi_{j}(x), \quad j=3,4$ in (20), we obtain

$$
\begin{align*}
& (\mathbf{x} \cdot \mathbf{u})=\sum_{k=1}^{3} \sum_{m=0}^{\infty} a_{k} \rho \frac{\partial}{\partial \rho} \Psi_{m}^{(1)}\left(\lambda_{k} \rho\right) Y_{k m}-c_{1} \sum_{m=0}^{\infty} m(m+1) \Psi_{m}^{(1)}\left(\lambda_{4} \rho\right) Z_{3 m} \\
& \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(\mathbf{x})}[\mathbf{x} \cdot \mathbf{u}]_{k}= \\
& \sum_{m=0}^{\infty} m(m+1)\left\{-\sum_{k=1}^{3} a_{k} \Psi_{m}^{(1)}\left(\lambda_{k} \rho\right) Y_{k m}+c_{1}\left(\rho \frac{\partial}{\partial \rho}+1\right) \Psi_{m}^{(1)}\left(\lambda_{4} \rho\right) Z_{3 m},\right\} \\
& \sum_{k=1}^{3} \frac{\partial u_{k}}{\partial S_{k}(\mathbf{x})}=-\sum_{m=0}^{\infty} m(m+1) \Psi_{m}^{(1)}\left(\lambda_{4} \rho\right) Z_{4 m}, \tag{22}\\
& (\mathbf{x} \cdot \mathbf{w})=\sum_{k=1}^{3} \sum_{m=0}^{\infty} b_{k} \rho \frac{\partial}{\partial \rho} \Psi_{m}^{(1)}\left(\lambda_{k} \rho\right) Y_{k m}-c_{2} \sum_{m=0}^{\infty} m(m+1) \Psi_{m}^{(1)}\left(\lambda_{5} \rho\right) Y_{4 m} \\
& \sum_{k=1}^{3} \frac{\partial}{\partial S_{k}(\mathbf{x})}[\mathbf{x} \cdot \mathbf{w}]_{k}= \\
& \sum_{m=0}^{\infty} m(m+1)\left\{-\sum_{k=1}^{3} b_{k} \Psi_{m}^{(1)}\left(\lambda_{k} \rho\right) Y_{k m}+c_{2}\left(\rho \frac{\partial}{\partial \rho}+1\right) \Psi_{m}^{(1)}\left(\lambda_{5} \rho\right) Y_{4 m},\right\} \\
& \sum_{k=1}^{3} \frac{\partial w_{k}}{\partial S_{k}(\mathbf{x})}=-\sum_{m=0}^{\infty} m(m+1) \Psi_{m}^{(1)}\left(\lambda_{5} \rho\right) Y_{5 m}, \quad \theta=\sum_{k=1}^{3} \sum_{m=0}^{\infty} \Psi_{m}^{(1)}\left(\lambda_{k} \rho\right) Y_{k m}(\vartheta, \varphi)
\end{align*}
$$

Passing to the limit as $\rho \rightarrow R_{1}$ and taking into account boundary conditions for the determination of $Y_{m j}$ and $Z_{m j}$ we obtain the system of algebraic equations

$$
\begin{align*}
& \sum_{k=1}^{3} a_{k}\left[\rho \frac{\partial}{\partial \rho} \Psi_{m}^{(1)}\left(\lambda_{k} \rho\right)\right]_{\rho=R_{1}} Y_{k m}-c_{1} m(m+1) Z_{3 m}=h_{1 m}^{-}, \\
& m(m+1)\left\{-\sum_{k=1}^{3} a_{k} Y_{k m}+c_{1}\left[\left(\rho \frac{\partial}{\partial \rho}+1\right) \Psi_{m}^{(1)}\left(\lambda_{4} \rho\right)\right]_{\rho=R_{1}} Z_{3 m}\right\}=h_{2 m}^{-}, \\
& -m(m+1) Z_{4 m}=h_{3 m}^{-}, \\
& \sum_{k=1}^{3} b_{k}\left[\rho \frac{\partial}{\partial \rho} \Psi_{m}^{(1)}\left(\lambda_{k} \rho\right)\right]_{\rho=R_{1}} Y_{k m}-c_{2} m(m+1) Y_{4 m}=h_{4 m}^{-}, \\
& m(m+1)\left\{-\sum_{k=1}^{3} b_{k} Y_{k m}+c_{2}\left[\left(\rho \frac{\partial}{\partial \rho}+1\right) \Psi_{m}^{(1)}\left(\lambda_{5} \rho\right)\right]_{\rho=R_{1}} Y_{4 m},\right\}=h_{5 m}^{-}, \\
& -m(m+1) Y_{5 m}=h_{6 m}^{-}, \quad Z_{40}=Y_{40}=Z_{30}=Y_{50}=0, \\
& Y_{1 m}+Y_{2 m}+Y_{3 m}=h_{7 m}^{-}, \quad h_{30}^{-}=h_{60}^{-}=h_{20}^{-}=h_{50}^{-}=0 . \tag{23}
\end{align*}
$$

By virtue of Theorem 1 we conclude that the system (23) for $m \geq 0$ is uniquely solvable and the functions $Y_{j m}$ and $Z_{j m}$ are possible to express by the known functions $h_{j m}^{-}$.

If we take into account the sufficient conditions of convergence of absolutely and uniformly convergent series with respect to the spherical harmonic and the property of functions $\Psi_{m}^{(1)}\left(\lambda_{k} \rho\right)$ we conclude that the obtained solutions are represented as absolutely and uniformly convergent series.

REFERENCES

1. Grot R.A. Thermodynamics of a continuum with microtemperature. Int. J. Engng. Sci., 7 (1969), 801-814.
2. Iesan D., Quintanilla R. On a theory of thermoelasticity with microtemperatures. J. Thermal Stresses, 23 (2000), 199-215.
3. Svanadze M. Fundamental solutions of the equations of the theory of thermoelasticity with microtemperatures. J. of Thermal Stresses, 27 (2004), 151-170.
4. Scalia A., Svanadze M., Tracinà R. Basic theorems in the equilibrium theory of thermoelasticity with microtemperatures. J. of Thermal Stresses, 33 (2010), 721-753.
5. Iesan D. On a theory of micromorphic elastic solids with microtemperatures. J. of Thermal Stresses, 24 (2001), 737-752.
6. Svanadze M. On the linear theory of thermoelasticity with microtemperatures. Techniche Mechanik, 32, 2-5 (2012), 564-576.
7. Bitsadze L. Effective solution of the Dirichlet BVP of the linear theory of thermoelasticity with microtemperatures for a spherical ring. J. of Thermal Stresses, 36, 7 (2013), 714-726.
8. Bitsadze L. Effective solution of the Neumann BVP of the linear theory of thermoelasticity with microtemperatures for a spherical ring. Georgian International J. of Science and Technology, $\mathbf{5}$, 1-2 (2013), 5-19.
9. Bitsadze L., Jaiani G. Theorems for the third and fourth BVPs of 2D theory of thermoelastisty with microtemperatures. Mechanics of The Continuous Environment Issues, Dedicated To The 120-th Birth Anniversary of Academician Nikoloz Muskhelishvili, (2012), 99-119.
10. Bitsadze L., Jaiani G. Explicit solutions of boundary value problems of 2D theory of thermoelasticity with microtemperatures for the half-plane. Proc. I. Vekua Inst. of appl. Math., 61-62 (2012), 1-13.
11. Bitsadze L., Jaiani G. Some basic boundary value problems of the plane thermoelasticity with microtemperatures. Math. Meth. Appl. Sci., 36 (2013), 956-966.
12. Basheleishvili M., Bitsadze L., Jaiani G. On fundamental and singular solutions of the system of equations of the equilibrium of the plane thermoelastisity theory with microtemperatures. Bulletin of TICMI, 15 (2011), 5-12.
13. Natroshvili D.G., Svanadze M.G. Some dinamical problems of the theory of coupled thermoelasticity for the piecewise homogeneous bodies. (Russian) Proceedings of I. Vekua Institute of Applied Mathematics, 10 (1981), 99-190.

Received 11.04.2014; revised 12.07.2014; accepted 15.09.2014.
Author's address:
L. Bitsadze
I. Vekua Institute of Applied Mathematics of
Iv. Javakhishvili Tbilisi State University

2, University St., Tbilisi 0186
Georgia
E-mail: lamarabits@yahoo.com
lamara.bitsadze@gmail.com

