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Abstract

The present paper is devoted to the analysis of a dimensional reduction method, which

is a generalization of I. Vekua’s method for general elliptic problems. For (n + 1)-dimensional

boundary value problem we construct the sequence of problems in n-dimensional spaces and prove

the well-posedness of the obtained problems. Moreover, we prove convergence of the sequence of

vector-functions of (n+1) variables restored from the solutions of reduced n-dimensional boundary

value problems to the exact solution of original problem and estimate the rate of convergence.
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In the paper [1] was suggested one of the methods for constructing the two-dimensio-
nal models of prismatic shells in the theory of elasticity. In this work I. Vekua expands
the displacement vector-functions, stress and strain tensors into orthogonal Fourier-
Legendre series with respect to the variable of plate thickness and then considering
only the first N + 1 terms of the expansions, he obtaines the two-dimensional model
of order N . However, in [1] initial boundary value problems are considered only in the
spaces of regular functions and the relation of the constructed models to the original
three-dimensional problems is not investigated. For static boundary value problem
existence and uniqueness of solution to the reduced problem, obtained by I. Vekua’s
method, in Sobolev spaces first were investigated in [2]. The rate of approximation of
the exact solution to the three-dimensional problem by the vector-functions of three
variables restored from the solutions of reduced problems in Ck spaces was estimated
in [3]. Later, applying I. Vekua’s method hierarchic two-dimensional models of shells
and plates in the theory of elasticity were constructed in [4-6].

Note, that first, the systematic investigation of a dimensional reduction method
based on I. Vekua’s idea, was carried out by M. Avalishvili under supervision of D.
Gordeziani in 1998, 1999 and the obtained results were reported on the 58-th, 59-
th Students Conferences of Tbilisi State University and on Enlarged Sessions of the
Seminar of I. Vekua Institute of Appled Mathematics [7, 8]. Later, the results on
the relation of hierarchic models for static and dynamical problems of the theory of
elasticity in the case of various spatial domains were presented with complete proofs
in the papers prepared by M. Avalishvili under supervision of D. Gordeziani, which
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win the first prizes at Soros Conferences for Students and Post-Graduate Students in
2000-2002.

More precisely, in the paper presented on the first Soros Conference in 2000 was con-
structed and investigated in Sobolev spaces a two-dimensional model of static boundary
value problem in the case of elastic prismatic shell, an one-dimensional model in the
case of elastic rod with variable rectangular cross-section and a new hierarchic model for
elastic multistructures. Moreover, in this work was proved convergence of the sequences
of vector-functions restored from the solutions of the corresponding lower-dimensional
problems to the exact solutions of original problems and first were obtained a-priori
modelling error estimates in Sobolev spaces. It should be pointed out, that the ap-
proach and basic formulas given in this paper can be directly applied without any
modifications for various elastic structures, and, in particular, for shells and rods with
singularities on the boundary, but in order to simplify notations and reasoning in the
paper were considered the cases of elastic bodies with positive thickness and width. In
the papers presented on the second (in 2001) and on the third (in 2002) Soros Con-
ferences along with the static problems were considered and completely studied the
dynamical lower-dimensional models for initial boundary value problems in the cases
of prismatic shells and rods, and their relation to the original three-dimensional prob-
lems was investigated. A certain part of the above mentioned results may be found in
the papers [9-12].

Let D be an open set of the space Rn, n ∈ N. For each positive integer s and real
r ≥ 1, W s,r(D) denote the Sobolev spaces of real-valued functions based on Lr(D)
[13] and for r = 2 these spaces we denote by Hs(D) and the corresponding spaces of
vector-valued functions are Hs(D) = [Hs(D)]m, m ∈ N. Hs

0(D) is the closure of the
set [D(D)]m of infinitely differentiable vector-functions with compact support in D in
the space Hs(D). The generalized partial derivative ∂/∂xα with respect to the α-th
variable we denote by ∂α, 1 ≤ α ≤ n. For Lipschitz domain D [14], we also require
Sobolev space H1/2(ΓD

1 ) defined on a part ΓD
1 of the boundary ∂D, which is an element

of Lipschitz dissection of ∂D and let H1/2(ΓD
1 ) = [H1/2(ΓD

1 )]m. The dual spaces of

H1(D) and H1/2(ΓD
1 ) we denote by H̃−1(D) and H−1/2(ΓD

1 ), respectively.
Suppose that Ω ⊂ Rn+1, x = (x1, ..., xn+1), n ∈ N, is a bounded Lipschitz domain,

and consider boundary value problem for a linear, second-order system of partial dif-
ferential equations

−
n+1∑
p=1

n+1∑
q=1

∂p (M pq∂qu) +
n+1∑
q=1

M q∂qu + M 0u = f , in Ω, (1)

n+1∑
p=1

n+1∑
q=1

M pq∂quνq + MΓ1u = g, on Γ1,

u = 0, on Γ0,

(2)

where M pq,M q,M 0 and MΓ1 are m ×m, m ∈ N, matrices with elements from the
spaces L∞(Ω) and L∞(Γ1), respectively, f , g are prescribed m-component vector-
functions, ν = (ν1, ..., νn+1)

T is the outward unit normal to Ω, Γ0, Γ1 are elements
of Lipschitz dissection of Γ = ∂Ω = Γ0 ∪ Γ01 ∪ Γ1 [14], Γ01 is a Lipschitz curve, and
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u = (u1, ..., um)T is the unknown vector-function, which satisfies the equation (1) and
the boundary conditions (2) in the sense of suitable spaces. The problem (1), (2)
admits the following variational formulation: find u ∈ V (Ω) = {v ∈ H1(Ω); v = 0 on
Γ0}, such that

n+1∑
q=1

∫

Ω

(
n+1∑
p=1

(M pq∂qu, ∂pv) + (M q∂qu,v) + (M 0u,v)

)
dx +

+

∫

Γ1

(MΓ1u,v) dΓ1 = 〈f ,v〉Ω + 〈g, trΓ1(v)〉Γ1 , ∀v ∈ V (Ω), (3)

where (., .) is the scalar product in the space Rm, f ∈ H̃−1(Ω), g ∈ H−1/2(Γ1),

〈., .〉Ω and 〈., .〉Γ1 denote the duality relations between the spaces H̃−1(Ω), H1(Ω) and
H−1/2(Γ1), H1/2(Γ1), respectively. The bilinear and linear forms in the left-hand and
right-hand parts of the equation (3) we denote by B(u,v) and L(v), respectively. The
formulated problem (3) has a unique solution u ∈ V (Ω) if the matrices M pq, M q, M 0

and MΓ1 are such that for all v ∈ V (Ω) the following condition is fulfilled

n+1∑
q=1

∫

Ω

(
n+1∑
p=1

(M pq∂qv, ∂pv) + (M q∂qv,v) + (M 0v, v)

)
dx +

+

∫

Γ1

(MΓ1v,v) dΓ1 ≥ cB ‖v‖2
H1(Ω) . (4)

Note, that static boundary value problems of the theory of linear elasticity [15-17]
are particular cases of the problem (3). Indeed, let Ω∗ = θ(Ω) be an initial con-
figuration of elastic body, where Ω ⊂ R3 is a bounded Lipschitz domain and θ is a
C2-diffeomorphism of Ω onto Ω∗, so that the vectors T p(x) = ∂pθ(x), p = 1, 3, are
linearly independent at all points x ∈ Ω (Ω, Ω∗ denote the closures of the domains
Ω and Ω∗, respectively). Since θ is an injective mapping, each point x∗ ∈ Ω∗ can be
unambiguously written as x∗ = θ(x), x ∈ Ω, and the coordinates xi (i = 1, 3) of x are
the curvilinear coordinates of x∗. The vectors {T p(x)}3

p=1 and {T p(x)}3
p=1 form the co-

variant and contravariant basises at the point x∗ = θ(x), respectively, where the scalar
product of T p(x) and T q(x) is equal to δpq = T p(x) · T q(x), δpq is the Kronecker delta
(p, q = 1, 3). Assume, that the body Ω∗ consists of arbitrary (i.e., of nonhomogeneous
and anisotropic) linearly elastic material, Ω∗ is clamped along a part θ(Γ0), Γ0 ⊂ ∂Ω of
the boundary Γ∗ = ∂Ω∗ and surface forces are acting on the rest part of the boundary.
The variational formulation of the corresponding static three-dimensional problem of
linearized elasticity in terms of curvilinear coordinates is of the form (3), with n = 2,
m = 3, MΓ1 ≡ 0,

f = f̂
√

T , g = σ
√

T , B(v̂,v) =
3∑

p,q,bp,bq=1

∫

Ω

apqbpbq(x)ebp||bq(v̂)ep||q(v)
√

Tdx,



18 Gordeziani D., Avalishvili G., Avalishvili M.

where apqbpbq are the contravariant components of the three-dimensional elasticity tensor,

ep||q(v) = 1/2(∂pvq + ∂qvp)−
3∑

bp=1

T bp · ∂pT q(x)vbp denotes the linearized strains in curvi-

linear coordinates, T is determinant of the matrix (Tpq) with elements Tpq = T p · T q,

f̂ = (f̂ i), σ = (σi), f̂ i, σi are the contravariant components of the applied body force
and surface force densities, respectively, u = (ui), ui are the covariant components of

the displacement vector-field
3∑

i=1

uiT
i of the points of the body Ω∗ (i, p, q = 1, 3). From

practical point of view it is important to consider the case when the tensor (apqp̂q̂) is
symmetric and positive definite, i.e.

apqp̂q̂(x) = aqpp̂q̂(x) = apqq̂p̂(x),
3∑

p,q,p̂,q̂=1

apqp̂q̂(x)εpqεp̂q̂ ≥ ĉ

3∑
p,q=1

(εpq)
2, x ∈ Ω,

for all εpq ∈ R, εpq = εqp, p, q, p̂, q̂ = 1, 3. From the latter conditions applying a lemma
of J.-L. Lions [18] we obtain that the condition (4) is fulfilled and since, in this case,
the bilinear form B(., .) is symmetric, then u is also a unique solution to the following
minimization problem: find u ∈ V (Ω), such that

J(u) = inf
v∈V (Ω)

J(v), J(v) =
1

2
B(v,v)− L(v), ∀v ∈ V (Ω).

In the present paper we construct an algorithm for approximation of (n + 1)-
dimensional elliptic problem (3) by n-dimensional problems in the case of the following
type Lipschitz domain

Ω = {(x1, ..., xn, xn+1) ∈ Rn+1; h−(x1, ..., xn) < xn+1 < h+(x1, ..., xn), (x1, ..., xn) ∈ ω},
where ω ⊂ Rn is a bounded Lipschitz domain with boundary ∂ω, h± ∈ Lip(ω)∩C0(ω̄)
are Lipschitz continuous in ω, h+ = h− on a subset ω0 ⊂ ω with zero measure in Rn

and h+ > h− on the rest part ω1 ∪ γ̃ of ω, ω1 = ω\ω0, γ̃ = ∂ω\ω0. Note, that ω0 is a
closed set and ω0 ⊂ ∂ω, ω1 = ω, since h± are continuous functions and Ω is a Lipschitz
domain. Denote by Γ+ and Γ− the parts of the boundary ∂Ω defined by the equations
xn+1 = h+(x1, ..., xn) and xn+1 = h−(x1, ..., xn), (x1, ..., xn) ∈ ω, respectively, and let

Γ̃ = {(x1, ..., xn+1) ∈ ∂Ω\(Γ+ ∪ Γ−); (x1, ..., xn) ∈ γ̃} be a part of the lateral boundary
where h+ is greater then h−.

Let us consider the (n + 1)-dimensional problem (3) when Γ0 is a subset of Γ̃,

Γ0 = {(x1, ..., xn+1) ∈ Γ̃; (x1, ..., xn) ∈ γ0 ⊂ γ̃}, γ0 is a Lipschitz curve with positive
length, if γ0 6= ∅. In order to reduce the problem (3) to n-dimensional one we construct
the sequence of subspaces VN(Ω) ⊂ V (Ω), N = (N1, ..., Nm), of vector-functions the
i-th component is which is a polynomial of degree Ni ≥ 0 with respect to the variable
xn+1, i.e. the subspace VN(Ω) is defined by

VN(Ω) = {vN = (vNi) ∈ H1(Ω); vNi =

Ni∑
ri=0

1

h

(
ri +

1

2

)
ri
vNi Pri

(
x3 − h̄

h

)
,

vN = 0 on Γ0, 0 ≤ ri ≤ Ni, i = 1,m},
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where h =
h+ − h−

2
, h̄ =

h+ + h−

2
and Pr is the Legendre polynomial of degree r ∈

∈ N ∪ {0}. For notational brevity in the sequel (xn+1 − h̄)/h we designate by z and
assume, that the indices i, j take their values in the set {1, ..., m}.

From the problem (3), on the subspace VN(Ω) we obtain the following problem: find

the unknown vector-function wN = (wNi) ∈ VN(Ω), wNi =

Ni∑
ri=0

1

h

(
ri +

1

2

)
ri
wNi Pri

(z),

which satisfies the equation

n+1∑
q=1

∫

Ω

(
n+1∑
p=1

(M pq∂qwN, ∂pvN) + (M q∂qwN, vN) + (M 0wN, vN)

)
dx +

+

∫

Γ1

(MΓ1wN,vN) dΓ1 = 〈f ,vN〉Ω + 〈g, trΓ1(vN)〉Γ1 , ∀vN ∈ VN(Ω). (5)

Since h± ∈ Lip(ω), by Rademacher’s theorem [19] the functions h± are differentiable
almost everywhere in ω and ∂αh± ∈ L∞(ω∗), ω∗ ⊂ ω, α = 1, n. Therefore, taking into
account that h is positive in ω, from the definition of the space VN(Ω) it follows, that
ri
vNi is a function of class H1 in the interior of the set ω, i.e.

ri
vNi∈ H1

loc(ω), 0 ≤ ri ≤ Ni,
i = 1,m. Moreover, ‖vN‖H1(Ω) < ∞ implies that in the space [H1

loc(ω)]N1,m , N1,m =

= N1 + ... + Nm + m, of vector-functions ~vN with components
ri
vNi (i.e. ~vN = (

0
vN1,

...,
N1
vN1, ...,

0
vNm, ...,

Nm
vNm)T ) we can define the weighted norm ‖~vN‖∗ = ‖vN‖H1(Ω), where

the function vN of (n + 1) variables corresponds to ~vN.

Hence, the problem (5) is equivalent to the following problem: find ~wN ∈ ~VN(ω) =

= {~vN ∈ [H1
loc(ω)]N1,m ; ‖~vN‖∗ < ∞,

ri
vNi= 0 on γ0, 0 ≤ ri ≤ Ni, i = 1, ..., m}, such

that

BN(~wN, ~vN) = LN(~vN), ∀~vN ∈ ~VN(ω), (6)

where BN(~̂vN, ~vN) and LN(~vN) are the forms B(v̂N, vN) and L(vN) on the subspace

VN(Ω) rewritten in terms of ~̂vN and ~vN, which correspond to v̂N and vN, respectively.

Notice that in the definition of ~VN(ω) condition
ri
vNi= 0 on γ0 is understood in the

trace sense, because for the vector-functions from the space ~VN(ω) we can define the

trace on γ0. Indeed, if ~vN ∈ ~VN(ω), then the corresponding vN ∈ VN(Ω) ⊂ H1(Ω) and
tr(vN) ∈ H1/2(∂Ω), where tr designates the trace operator. Therefore for any function
ri
vNi the trace operator trγ0 we define by

trγ0(
ri
vNi) =

h+∫

h−

tr(vNi)|Γ0Pri
(z)dx3, 0 ≤ ri ≤ Ni, i = 1,m.

Thus, the (n+1)-dimensional boundary value problem (3) for elliptic system, in the
case of prismatic body Ω with Lipschitz boundary, we have reduced to n-dimensional
one (6). For the latter problem the following theorem is valid.
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Theorem 1. If M pq, M q, M 0 ∈ [L∞(Ω)]m×m, MΓ1 ∈ [L∞(Γ1)]
m×m, f ∈

∈ H̃−1(Ω), g ∈ H−1/2(Γ1) and condition (4) is fulfilled, then the reduced n-dimensional
problem (6) has a unique solution ~wN.

Proof. Let us show that the space ~VN(ω) is complete. Let {~v(l)
N }∞l=1 be a Cauchy

sequence in ~VN(ω), i.e., ‖~v(l)
N − ~v

(m)
N ‖∗ → 0, as l,m →∞.

From the definition of the norm ‖.‖∗ we deduce, that {v(l)
N }∞l=1 is a Cauchy sequence

in the space VN(Ω), where v
(l)
N = (v

(l)
Ni), v

(l)
Ni =

Ni∑
ri=0

1

h

(
ri +

1

2

)
ri
v

(l)

Ni Pri
(z), 0 ≤ ri ≤ Ni,

i = 1, 3. Hence, there exists vN ∈ H1(Ω) such that v
(l)
N → vN, as l → ∞ in H1(Ω).

Therefore, when l →∞,

trv
(l)
N → trvN in H1/2(∂Ω),

r
v

(l)

Ni=

h+∫

h−

v
(l)
NiPr(z)dx3 → r

vNi=

h+∫

h−

vNiPr(z)dx3 in L2(ω), ∀r ∈ N.

Since v
(l)
N ∈ VN(Ω), we have that trv

(l)
N = 0 on Γ0 and

ri
v

(l)

Ni= 0, for any ri > Ni,

from which we deduce vN = 0 on Γ0 and
ri
vNi= 0, for any ri > Ni, i = 1,m. So,

vN = (vNi), vNi =

Ni∑
ri=0

1

h

(
ri +

1

2

)
ri
vNi Pri

(z), i = 1, ..., m,

and hence vN ∈ VN(Ω). Consequently, corresponding vector-function ~vN = (
0
vN1

, ...,
N1
vN1, ...,

0
vNm, ...,

Nm
vNm)T ∈ ~VN(ω), since ‖~vN‖∗ = ‖vN‖H1(Ω) < ∞,

ri
vNi∈ H1

loc(ω),
ri
vNi= 0 on γ0, 0 ≤ ri ≤ Ni, i = 1,m. Moreover, ~v

(l)
N → ~vN in ~VN(ω), since

‖~v(l)
N − ~vN‖∗ = ‖v(l)

N − vN‖H1(Ω) → 0, as l →∞.

Thus, ~VN(ω) is a Hilbert space with scalar product defined by the norm ‖.‖∗.
According to the inequality (4) the bilinear form B(., .) is coercive on V (Ω). Hence,

B is coercive on the subspace VN(Ω) ⊂ V (Ω), and, consequently, the bilinear form

BN(., .) is coercive on the space ~VN(ω),

BN(~vN, ~vN) = B(vN,vN) ≥ cB ‖vN‖2
H1(Ω) = cB ‖~vN‖2

∗ , ∀~vN ∈ ~VN(ω).

Since f ∈ H̃−1(Ω), g ∈ H−1/2(Γ1) we infer that the linear form L is continuous in

V (Ω) and therefore LN is also continuous in ~VN(ω),

LN(~vN) = L(vN) ≤ c̃ ‖vN‖H1(Ω) = c̃ ‖~vN‖∗ , ∀~vN ∈ ~VN(ω),

and similarly the conditions on the matrices M pq, M q, M 0, MΓ1 imply continuity of
the bilinear form BN. 2
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So, we have constructed the sequence of n-dimensional problems, which can be
considered as approximations of original problem (3) and prove that these problems
has a unique solutions. In the sequel we investigate the convergence of the sequence of
approximate solutions {wN}, where wN ∈ VN(Ω) corresponds to the solution ~wN of
reduced problem, to the exact solution of the (n + 1)-dimensional problem, but before
we formulate the approximation theorem let us introduce the following anisotropic
weighted Sobolev space

H1,1,s
h± (Ω) = {v; ∂r−1

3 v ∈ H1(Ω), ∂αh±∂r
3v ∈ L2(Ω), α = 1, n, r = 1, s}, s ∈ N,

equipped with the norm

‖v‖H1,1,s

h± (Ω) =

(
s∑

r=1

[
∥∥∂r−1

3 v
∥∥2

H1(Ω)
+

n∑
α=1

(∥∥∂αh+∂r
3v

∥∥2

L2(Ω)
+

∥∥∂αh−∂r
3v

∥∥2

L2(Ω)

)])1/2

.

Note, that H1,1,s
h± (Ω) is a Hilbert space. Indeed, if {vk}k≥1 is a Cauchy sequence in

H1,1,s
h± (Ω), then {vk}k≥1 is a Cauchy sequence in the space H1(Ω) and, consequently,

vk → v in H1(Ω), as k →∞. Therefore, ∂r
3vk → ∂r

3v in H1(Ω), as k →∞,r = 1, s− 1.
Since h± ∈ Lip(ω) we have that ∂αh± ∈ L∞(ω∗), for any subdomain ω∗ of ω, ω∗ ⊂ ω,
and hence

∂αh±∂r
3vk → ∂αh±∂r

3v in L2(Ω∗), as k →∞, (7)

where r = 1, s, α = 1, n, Ω∗ is a subdomain of Ω, Ω∗ ⊂ Ω. From (7), taking
into acoount convergence of the sequence {∂αh±∂r

3vk}k≥1 in L2(Ω), we infer that
∂αh±∂r

3vk → ∂αh±∂r
3v in L2(Ω), as k → ∞, r = 1, s, α = 1, n, and, consequently,

the space H1,1,s
h± (Ω) is complete.

Theorem 2. If all the conditions of Theorem 1 are fulfilled, then the vector-function

wN = (wNi), wNi =

Ni∑
ri=0

1

h

(
ri +

1

2

)
ri
wNi Pri

(z), i = 1, m, restored from the solution

~wN = (
0
wN1, ...,

N1
wN1, . . . ,

0
wNm, ...,

Nm
wNm)T of n-dimensional problem (6) tends to the

solution u of (n+1)-dimensional problem (3) in the space H1(Ω), as N1, ..., Nm →∞.
Moreover, if u ∈ H1,1,s

h± (Ω), s ≥ 2, then

‖u−wN‖H1(Ω) ≤ cM

cBN s−1
θ(h+, h−,N), θ(h+, h−,N) → 0, as N = min

1≤i≤n
{Ni} → ∞,

where B(v, ṽ) ≤ cM‖v‖H1(Ω)‖ṽ‖H1(Ω), for all v, ṽ ∈ V (Ω). If, in addition, ‖u‖H1,1,s

h± (Ω) ≤
≤ c, c is independent of hmax = max

(x1,...,xn)∈ω
h(x1, ..., xn), then

‖u−wN‖H1(Ω) ≤
cMhs−1

max

cBN s−1
θ(N), θ(N) → 0, as N1, ..., Nm →∞.

Proof. Note that since u satisfies the equation (3) for all v ∈ V (Ω), then
B(u, vN) = L(vN), for all vN ∈ VN(Ω) ⊂ V (Ω). Hence, from the equation (6), taking
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into account definition of the forms BN and LN, we infer that B(u−wN, vN) = 0, for
all vN ∈ VN(Ω), and, consequently, for all vN ∈ VN(Ω),

B(u−wN,u−wN) = B(u−wN,u− vN) ≤ cM‖u−wN‖H1(Ω)‖u− vN‖H1(Ω).

Applying the last inequality by the coerciveness of the bilinear form B we obtain

cB‖u−wN‖H1(Ω) ≤ cM‖u− vN‖H1(Ω), ∀vN ∈ VN(Ω). (8)

First, let us estimate the rate of approximation of u by wN, when u satisfies
additional regularity conditions. By means of the solution u we construct the vector-
function uN, which is an element of the space VN(Ω) and we can estimate the norm of
the difference u− uN. Let us consider

uN = (uNi), uNi =

Ni∑
ri=0

1

h

(
ri +

1

2

)
ri
ui Pri

(z) +

Ni+1∑
ri=Ni

1

2

ri

∂3ui Pri−1(z),

where
r
v=

h+∫

h−

vPr(z)dx3, for any function v ∈ L2(Ω), r ∈ N ∪ {0}. From the conditions

of the theorem it follows, that uN ∈ VN(Ω). Indeed, since u ∈ V (Ω), then uN = 0 on
Γ0. Hence, it suffices to prove that uN ∈ H1(Ω).

Note that the Legendre polynomials satisfy the following equalities

Pr(t) =
1

2r + 1
(P ′

r+1(t)− P ′
r−1(t)), r ≥ 1,

tP ′
r(t) = P ′

r+1(t)− (r + 1)Pr(t), r ≥ 0,

from which we have that for almost all (x1, ..., xn) ∈ ω,

r
ui (x1, ..., xn) =

h

2r + 1

(
r−1

∂n+1ui (x1, ..., xn)−
r+1

∂n+1ui (x1, ..., xn)

)
, r ≥ 1, (9)

∂α(
r
ui) =

r

∂αui +
∂αh

h
(r + 1)

r
ui +∂αh̄

r

∂n+1ui +∂αh
r+1

∂n+1ui, r ≥ 0,

where i = 1,m, α = 1, n. Applying these formulas and expressions for derivatives of
Legendre polynomials

P ′
r(t) =

r−1∑

k=0

(
k +

1

2

)
(1− (−1)r+k)Pk(t),

tP ′
r(t) = rPr(t) +

r−1∑

k=0

(
k +

1

2

)
(1 + (−1)r+k)Pk(t),

r ≥ 1,

we obtain

∂n+1uNi =

Ni−1∑
ri=0

1

h

(
ri +

1

2

)
ri

∂n+1ui Pri
(z),
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∂αuNi =

Ni∑
ri=0

1

h

(
ri +

1

2

)
ri

∂αui Pri
(z) +

∂αh̄

h

(
Ni +

1

2

)
Ni

∂n+1ui PNi
(z)+

+

Ni+1∑
ri=Ni

∂αh

h

(
ri +

1

2

)
ri

∂n+1ui Pri−1(z) +

Ni+1∑
ri=Ni

1

2

(
ri

∂α∂n+1ui +

+∂αh̄(
ri

∂n+1∂n+1ui) + ∂αh(
ri+1

∂n+1∂n+1ui)

)
Pri−1(z), i = 1,m, α = 1, n.

According to the conditions of the theorem ui, ∂n+1ui ∈ H1(Ω), ∂αh±∂n+1ui, ∂αh±∂n+1

∂n+1ui ∈ L2(Ω) and, consequently, taking into account expressions for ∂puNi we deduce
that uNi ∈ H1(Ω), i = 1, m, p = 1, n + 1.

In order to obtain the estimates of the theorem, let us consider the residue εN =
= (εNi),

εNi = ui − uNi =
∞∑

ri=Ni+1

1

h

(
ri +

1

2

)
ri
ui Pri

(z)−
Ni+1∑
ri=Ni

1

2

ri

∂n+1ui Pri−1(z), i = 1,m.

By the orthogonality property of Legendre polynomials, taking into account ex-
pressions for ∂n+1uNi, ∂αuNi (α = 1, n, i = 1,m) and Parseval equality, we obtain

‖εNi‖2
L2(Ω) =

∞∑
ri=Ni+1

∫

ω

1

h

(
ri +

1

2

)
(
ri
ui)

2dω +

Ni∑
ri=Ni−1

∫

ω

h

2ri + 1
(

ri+1

∂n+1ui)
2dω,

‖∂n+1εNi‖2
L2(Ω) =

∞∑
ri=Ni

∫

ω

1

h

(
ri +

1

2

)
(

ri

∂n+1ui)
2dω,

‖∂αεNi‖2
L2(Ω) ≤

∞∑
ri=Ni+1

∫

ω

1

h

(
ri +

1

2

)
(

ri

∂αui)
2dω+

+
9

2

Ni+1∑
ri=Ni

∫

ω

h

2ri − 1

(
(

ri

∂α∂n+1ui)
2 + (∂αh̄)2(

ri

∂n+1∂n+1ui)
2 + (∂αh)2(

ri+1

∂n+1∂n+1ui)
2

)
dω+

+9

Ni+1∑
ri=Ni

∫

ω

(Ni + 1− ri)(∂αh̄)2 + (∂αh)2

h

(
ri +

1

2

)
(

ri

∂n+1ui)
2dω,

where α = 1, n, i = 1,m. From (9) we infer, that

‖(
r

∂
bβ
n+1∂

β
αui)‖2

L2(ω) ≤
c

r2(s−β−bβ)

r+s−β−bβ∑

k=r−s+β+bβ ‖h
s−β−bβ k

(∂s−β
n+1∂

β
αui) ‖2

L2(ω), (10)

where r ≥ s − β − β̂, β, β̂ = 0, 1, i = 1,m, α = 1, n, c = const > 0 is independent
of h+, h− and r. Therefore, from the last estimate, for all i = 1,m, p = 1, n + 1, we
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obtain

‖εNi‖2
L2(Ω) ≤

1

N2s
i

θi(h
+, h−, Ni),

‖∂pεNi‖2
L2(Ω) ≤

1

N
2(s−1)
i

θi(h
+, h−, Ni),

θi(h
+, h−, Ni) → 0, as Ni →∞. (11)

Hence, the inequality (8) imply

‖u−wN‖H1(Ω) ≤ cM

cBN s−1
θ(h+, h−,N), N = min

1≤i≤m
Ni,

where θ(h+, h−,N) → 0, as N →∞.
In addition, if the norm of u in the space H1,1,s

h± (Ω) is independent of the maximum
of the function h(x1, ..., xn) on the set ω, then applying (9) we have

‖εNi‖2
L2(Ω) ≤

h2s
max

N2s
i

θ̄i(Ni),

‖∂pεNi‖2
L2(Ω) ≤

h
2(s−1)
max

N
2(s−1)
i

θ̄i(Ni),

θ̄i(Ni) → 0, asNi →∞, i = 1,m, p = 1, n + 1,

from which, due to the inequality (8), follows the second estimate of the theorem.
Now let us prove the convergence result stated in the theorem. According to the

trace theorems for Sobolev spaces [14], for any v ∈ H1(Ω), v = 0 on Γ0, there exists
continuation ṽ ∈ H1

0 (Ω1) of v, where Ω1 is a Lipschitz domain, Ω ⊂ Ω1, Γ0 ⊂ ∂Ω1.
Note, that there exists a Lipschitz domain Ω∗ ⊂ Ω1, Ω∗ = {x ∈ Rn+1; h−∗ (x1, ..., xn) <
< xn+1 < h−∗ (x1, ..., xn), (x1, ..., xn) ∈ ω}, h−∗ ≤ h− ≤ h+ ≤ h+

∗ , h−∗ < h+
∗ on ω,

h±∗ ∈ C1(ω). Since the set of infinitely differentiable functions D(Ω1) with compact
support in Ω1 is dense in H1

0 (Ω1), then for any w̃ ∈ H1
0(Ω1) there exists a sequence of

infinitely differentiable vector-functions {v̂k}k≥1, v̂k ∈ [C∞
Γ∗0

(Ω∗)]m, which are defined

on Ω∗ and vanish on Γ∗0 = {x ∈ ∂Ω∗; (x1, ..., xn) ∈ γ0}, such that v̂k → w̃|Ω∗ in H1(Ω∗),
as k → ∞. Consequently, applying the inequalities (11) we deduce that the union of
subspaces [C∞

Γ∗0
(Ω∗)]m ∩ VN(Ω∗) for all N ∈ [N∪{0}]m is dense in [C∞

Γ∗0
(Ω∗)]m ⊂ V (Ω∗),

where VN(Ω∗) and V (Ω∗) are defined in the same way as VN(Ω) and V (Ω) in which

Ω, Γ0 is replaced by Ω∗, Γ∗0. Hence
⋃
N≥0

[C∞
Γ∗0

(Ω∗)]m ∩ VN(Ω∗) is dense in V (Ω∗) and,

considering the restrictions of vector-functions from the spaces VN(Ω∗) on Ω, from (8)
we obtain that wN → u in the space H1(Ω), as N1, ..., Nm →∞. 2
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