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Abstract. The particle transport in the micromaterials having crystal structure

is considered from the relativistic point of view. The process is modeled by the

system of partial differential equations connected with the 3D non-stationary

Schrödinger equation with the appropriate initial-boundary conditions. For the

small time interval this system is reduced to the Fredholm integral equation. The

sufficient conditions of existence of the solution of this system is obtained.
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Let us consider a particle transport at the 3D crystal nanostructure.
This structure is periodical. Let us denote one sample (period) of this
structure by G0 in the coordinate system Oxyz and let the crystal area V
contain n number of these samples.

Some metals in the solid state form a cubical crystal lattice, for example
gold, silver, germanium [1–4]. We will consider the general case, when G0 is
a simply-connected domain of any form. For the crystal lattice it is sufficient
to consider the movement of one particle [1–4]. The particle transport at
this system could be described by the Schrödinger equation [1–4]

i~
∂ψ

∂t
= − ~2

2m
∆ψ + (E − U)ψ, (1)

where ~ is the Plank constant, m is a mass of the electron, E − U is the
energy, ψ is a wave function, ψ = u+iv. Also the following initial-boundary
conditions are satisfied:

v
∣∣
t=0

= v0, u
∣∣
t=0

= u0, v
∣∣
Γ×{0<t<T} = 0, u

∣∣
Γ×{0<t<T} = 0, (2)

where Γ is the boundary of the considered structure, u0, v0 are the definite
continuous functions. The condition (2) reflects initial quantum states of a
particle, when it is confined at the quantum box G0 [1–4].

The equation (1) is equivalent to the following system of partial differ-
ential equations in the area QT = V × {0 < t < T}:

α
∂v

∂t
= β∆u− (E − U)u

α
∂u

∂t
= −β∆v + (E − U)v,

(3)
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v
∣∣
t=0

= v0, u
∣∣
t=0

= u0,

(u = v)
∣∣
Γ×{0<t<T}, = 0,

where α = ~ = const, β = ~2
2m

= const. Suppose that E − U = c(x, y, z, t),
then the system (3) becomes:

α
∂v

∂t
= β∆u− c(x, y, z, t)u,

α
∂u

∂t
= −β∆v + c(x, y, z, t)v.

(4)

At the small time-interval 0 < t < t1 (t1 is rather small), the system (4)
could be written as: 

α
v − v0
t1

= β∆u− cu,

α
u− u0
t1

= −β∆v + cv.
(5)

Let us rewrite the system (5) in the form:
∆u =

c

β
u+

α

β

v − v0
t1

,

∆v =
c

β
v − α

β

u− u0
t1

.
(6)

Putting first equation of (6) into the second, the system (6) could be
equivalently reduced to the following partial differential equation with re-
spect to u1

∆∆u1− 2
c

β
∆u1−

2

β

(
∂c

∂x

∂u

∂x
+
∂c

∂y

∂u

∂y
+
∂c

∂z

∂u

∂z

)
+

(
c2

β2
+

α2

β2t21

)
u1−

∆c

β
u1

=
α2

β2t21
u0 −

α

βt1
∆v0 +

cα

β2t21
v0 ≡ f(x, y, z), (7)

with a boundary condition u1
∣∣
Γ
= 0, where u1 = u(t1).

Suppose ∆u1
∣∣
Γ
= 0. Applying Poisson’s formula [5,6,7] we obtain the

following integro-differential equation

∆u1 = − 1

4π

∫
V

(
2
c

β
∆u1 +

2

β

(
∂c

∂x

∂u

∂x
+
∂c

∂y

∂u

∂y
+
∂c

∂z

∂u

∂z

)
−
(
c2

β2
+

α2

β2t21

)
u1

+
∆c

β
u1 − f(x′, y′, z′)

)
G(x, y, z, x′, y′, z′)dV ′, (8)

where dV ′ = dx′dy′dz′, G(x, y, z, x′, y′, z′) is Green’s function for the area
V .
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Using Green’s formulas after simple transformations (8) implies [5,6,7]

∆u1 = − 1

4π

∫
V

u1
∆c

β
GdV ′ (9)

+
1

4π

∫
V

u1
2

β

(
∂c

∂x

∂G

∂x
+
∂c

∂y

∂G

∂y
+
∂c

∂z

∂G

∂z

)
dV ′

+
1

4π

∫
V

u1

(
c2

β2
+

α2

β2t21

)
GdV ′ − 1

4π

∫
V

f(x′, y′, z′)G(x, y, z, x′, y′, z′)dV ′.

Once again, applying Poisson’s formula from (9) we obtain

u1 =
1

16π2

∫
V

u1K0(x, y, z, x
′, y′, z′)dV ′ (10)

+
1

16π2

∫
V

∫
V

f(x′, y′, z′)G(x, y, z, x′, y′, z′)G(x′′, y′′, z′′, x′, y′, z′)dV ′dV ′′,

where

K0(x, y, z, x
′, y′, z′) =

∫
V

(G(x, y, z, x′′, y′′, z′′)G(x′′, y′′, z′′, x′, y′, z′)

+

(
∂c

∂x

∂G

∂x
+
∂c

∂y

∂G

∂y
+
∂c

∂z

∂G

∂z

)
G(x′′, y′′, z′′, x′, y′, z′)

+

(
c2

β2
+

α2

β2t21

)
G(x, y, z, x′′, y′′z′′)G(x′′y′′, z′′, x′, y′, z′))dV ′′,

where dV ′′ = dx′′dy′′dz′′.
(10) is the Fredholm equation with a weakly singular kernel and we can

use the Fredholm theory [5,6,7].
For the small parameters applying Banach theorem [7] one obtains the

following sufficient condition for the existence of the solution of this equa-
tion.

Theorem. If

1

16(π)2

∫
V

K0(x, y, z, x
′, y′, z′)dV ′ << 1,

then there exists a unique solution of the equation (10) and this solution is
given by the series fn, where f0 is the second (known) term of (10) and

fn = f0 +
1

16(π)2

∫
V

K0(x, y, z, x
′, y′, z′)fn−1dV

′.

Note 1. If G0 and V are parallelepipeds, then Green’s function G
is representable by the Fourier series and consequently we can obtain the
solution of the equation (10) by means of Fourier series.
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Note 2. If c > 0 is a function only of time then we can obtain more
simple equations than (10).

Let us rewrite the system (6) in the form:
∆u− c

β
u =

α

β

v − v0
t1

,

∆v − c

β
v = −α

β

u− u0
t1

.
(11)

If we admit, that right hand sides of this equations are known, we obtain
[6,7,8]:

v =
1

4π

∫
V

{
α

β

u− u0
t1

}
e−kr

r
dV ′, (12)

u = − 1

4π

∫
V

{
α

β

v − v0
t1

}
e−kr

r
dV ′, (13)

where r2 = (x− x′)2 + (y − y′)2 + (z − z′)2, dV ′ = dx′dy′dz′, k2 =
c

β
.

Putting (12) into (13) and taking into account the boundary condition
[5,6,7], after simple transformations we obtain the following integral equa-
tion

u = − 1

(4π)2
α2

β2t21

∫
V

(u− u0)K(x, y, z, x′, y′, z′)dV ′

+
1

(4π)2

∫
V

v0
t1

e−kr

r
dV ′, (14)

where

K(x, y, z, x′, y′, z′) =

∫
V

e−kr
′

r′
e−kr

r
dV ′′,

(r′)2 = (x′′ − x′)2 + (y′′ − y′)2 + (z′′ − z′)2, dV ′′ = dx′′dy′′dz′′.

(14) is the Fredholm equation with a weakly singular kernel.
The Banach theorem implies the following sufficient condition for the

existence of the solution of this equation.
If

1

(4π)2

{
α2

β2t21

}
<

1

M
,

∫
V

K(x, y, z, x′, y′, z′)dV ′ < M,

then there exists a unique solution of the equation (14) and consequently
of the system (11).
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