MINIMAL PAIRS OF C.E. SQ- DEGREES

Roland Omanadze
Iv. Javakhishvili Tbilisi State University, Department of Mathematics, Tbilisi, Georgia, roland.omanadze@tsu.ge

Tennenbaum (see, [1, p.159]) defined the notion of Q-reducibility on sets of natural numbers as follows: a set A is Q-redusible to a set B (in symbols: $A \leq_{Q} B$) if there exists a computable function f such that for every $x \in \omega$ (where ω denotes the set of natural numbers),

$$
x \in A \Leftrightarrow W_{f(x)} \subseteq B .
$$

If, in addition, there exists a computable function g such that

$$
(\forall \mathrm{x})(\forall \mathrm{y})\left(\mathrm{y} \in W_{f(x)} \Rightarrow \mathrm{y}<\mathrm{g}(\mathrm{x})\right),
$$

then we say that A is strongly Q-reducible (or $s Q$-reducible) to B (in symbols: $A \leq_{s Q} B$).
The relation of $s Q$-reducibility is reflexive and transitive so that it generates a degree structure on the subsets of ω.

Our notation and terminology are standard and can be found in [1, 2].
Theorem 1. If c.e. sQ-degrees \mathbf{a} and \mathbf{b} form a minimal pair in the c.e. $s Q$-degrees then \mathbf{a} and \mathbf{b} form a minimal pair in the sQ-degrees.

This is immediate from
Theorem 2. If \mathbf{a} and \mathbf{b} are c.e. sQ-degrees, then for every nonzero sQ-degree \mathbf{c} such that $\mathbf{c} \leq_{s Q} \mathbf{a}, \mathbf{b}$, there exists a c.e. sQ-degree \mathbf{d} such that $\mathbf{d} \leq_{s Q} \mathbf{a}, \mathbf{b}$ and $(\forall \mathrm{C} \in \mathbf{c})(\forall \mathrm{D} \in \mathbf{d})\left(\mathrm{C} \leq_{Q}\right.$ D).

Theorem 3. For every simple set S such that $K \Psi_{s Q} S$, where K is a creative set, there is a noncomputable nonspeedable set A which is sQ - incomparable with S and $\operatorname{deg}_{s Q}(\mathrm{~A})$ and $\operatorname{deg}_{s Q}(B)$ does not form a minimal pair.

Theorem 4. For every speedable set S such that $K \ddagger_{s Q} S$, where K is a creative set, there is a noncomputable nonspeedable set A which is s Q - incomparable with S and $\operatorname{deg}_{s Q}(\mathrm{~A})$ and $\operatorname{deg}_{s Q}(B)$ does not form a minimal pair.

References

1. Rogers, H.: Theory of recursive functions and effective computability. McGraw-Hill Book Co., New York, 1967.
2. Soare, R.I.: Recursively enumerable sets and degrees. Springer-Verlag, Berlin, 1987.
