NEW SUFFICIENT CONDITION FOR UNIFORM INTEGRABILITY OF STOCHASTIC EXPONENTIAL

Besik Chikvinidze
V. Chavchanidze Institute of Cybernetics of Georgian Technical University
beso.chiqvinidze@gmail.com

Given a basic probability space (Ω, \mathcal{F}, P) with continuous filtration $\left(\mathcal{F}_{t}\right)_{0 \leq t \leq T}$ and let $M=\left(M_{t}\right)_{0 \leq t \leq T}$ be a local martingale. Denote by $\mathcal{E}(M)$ the stochastic exponential of a local martingale $M: \varepsilon_{t}(M)=\exp \left(M_{t}-\frac{1}{2}\langle M\rangle_{t}\right)$.. Now let us formulate the main result of the paper:

Theorem: Let a_{s} be a predictable process such that $\left|a_{s}-1\right| \geq \varepsilon$ for some $\varepsilon>0$ and

$$
\sup _{0 \leq v \leq T} E \exp \left\{\int_{0}^{v} a_{s} d M_{s}+\int_{0}^{v}\left(\frac{1}{2}-a_{s}\right) d\langle M\rangle_{s}\right\}<\infty
$$

where sup is taken over all stopping times. Then for any predictable process b_{s} such that $\left|b_{s}-a_{s}\right| \leq\left|a_{s}-1\right|$ the stochastic exponential $\mathcal{E}\left(\int b d M\right)$ is a uniformly integrable martingale.
Notice that the inequality $\left|b_{s}-a_{s}\right| \leq\left|a_{s}-1\right|$ is obviously satisfied when $b_{s} \equiv 1$ and $b_{s}=a_{s}$, so we will have the following important corollary which is the generalization of mixed NovikovKazamaki's criteria:

Corollary: If conditions of theorem are satisfied, then $\mathcal{E}(M)$ and $\mathcal{E}\left(\int a d M\right)$ are uniformly integrable martingales.
Notice that Novikov's, Kazamaki's and mixed Novikov-Kazamaki's criteria correspond to the case where $a_{s} \equiv 0, a_{s} \equiv \frac{1}{2}$ and $a_{s} \equiv a \neq 1$ is a constant, respectively.

Now we sketch the main idea of the proof. At first let us define the stopping time
$\tau=\inf \left\{t \geq 0: \varepsilon_{t}\left(\int b d M\right)=0\right\}$ and the process:

$$
Y_{t}=E\left[\varepsilon_{t, T}\left(\int b d M\right) I_{(t<\tau)}+I_{(t \geq \tau)} \mid \mathcal{F}_{t}\right]
$$

where $\quad \mathcal{E}_{t, T}\left(\int b d M\right)=\mathcal{E}_{T}\left(\int b d M\right) / \mathcal{E}_{t}\left(\int b d M\right)$. Since $\mathcal{E}\left(\int b d M\right)$ is a nonnegative super martingale $\mathcal{E}_{t}\left(\int b d M\right)=0$ if $t \geq \tau$, and from this we can deduce that $Y_{t} \varepsilon_{t}\left(\int b d M\right)$ is also a super martingale. After that we will derive corresponding backward equation on the stochastic interval $\left[\left[0 ; \tau\left[\left[\right.\right.\right.\right.$ for the process Y_{t} and then using technique of backward stochastic differential equations we prove the equality $Y_{0}=E \mathcal{E}_{T}\left(\int b d M\right)=1$, which means that $\mathcal{E}\left(\int b d M\right)$ is a uniformly integrable martingale.

