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Abstract. The nonlinear integral equation connected with non-linear non-stationary Schrö-

dinger and diffusion equations with the appropriate boundary conditions is considered. The

approximate solution of this equation is obtained.

Keywords and phrases: Schrödinger equation, diffusion equation, nonlinear integral equa-

tion.

AMS subject classification: 35Q41, 35R10, 47J05, 65D25.

Introduction. Several Physical processes, such as crystal growth, electron plas-
matic waves, nutrient supply in plants and living organisms are described by non-linear
Schrödinger type and reaction-diffusion equations with the appropriate boundary con-
ditions [1-9].

Setting of the problem. In Oxyz space we consider the area

G = {−a ≤ x ≤ a; −b ≤ y ≤ b; −c ≤ z ≤ c},

where a, b, c > 0 are the definite constants, and the following equation

∆U + λU3 = A0U (1)

with the boundary condition
U |∂G = 0, (2)

where U is unknown function, ∂G is a boundary of G, λ is some parameter A0 > 0 is
the definite constant.

Here we will consider the following problem.
Problem 1. In the area G find continuous function U , (U ̸= 0), having second

order derivatives, satisfying the equation (1) and the condition (2).
Let us rewrite the equation (1) in the form

∆U − A0U = −λU3. (3)

Suppose that the right hand side of the equation (3) is known. According to condition
(2) we can use the Poisson formula [10, 11] and equivalently reduce Problem 1 to the
following nonlinear integral equation

u(x, y, z) =
1

4π

∫∫∫
G

(λu3)
e−mr

r
dx′dy′dz′, (4)

where m2 = A0; r
2 = (x− x′)2 + (y − y′)2 + (z − z′)2.
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Equation (4) is the non-linear homogeneous equation with the weakly singular ker-
nel. We are interested in non-trivial solutions of this equation.

The approximate solution. Now let us consider the following auxiliary problem.
Problem 2. In R3 to find continuous function U0, (U0 ̸= 0 ) having second order

derivatives, vanishing at infinity and satisfying equation (1).
The approximate solution of Problem 2 is obtained in [12] and is given by the

formula
U0 = R sin e−α|x|−β|y|−γ|z|−D, (5)

where R is the given constant and the constants λ, α, β, γ > 0 satisfy the conditions

α2 + β2 + γ2 = A0, (6)

λR2 =
4

3
A0, (7)

the constant D > 0 is chosen for desired accuracy in such a way, that e−4D is negligible
(for example for D = 4, e−4D ≈ 10−7).

Note. Let us introduce the notation ψ = e−α|x|−β|y|−γ|z|−D. The first order deriva-
tives of this function has discontinuities at the planes x = 0; y = 0; z = 0, but their
squares are continuous functions, also the second order derivatives at the eight octants
of the space Oxyz exist and the following formulas are valid(∂ψ

∂x

)2
= α2ψ2;

(∂ψ
∂y

)2
= β2ψ2;

(∂ψ
∂z

)2
= γ2ψ2;

∂2ψ

∂x2
= α2ψ;

∂2ψ

∂y2
= β2ψ;

∂2ψ

∂z2
= γ2ψ.

Taking into the account the formulas

sinψ ≈ ψ − ψ3

6
, cosψ ≈ 1− ψ2

2
,

and putting (5),(6),(7),(8) into (3) we obtain∣∣∣∆U0 + λU3
0 − A0U0

∣∣∣ = ∣∣∣(1− ψ2

2

)
∆ψ −

(
ψ − ψ3

6

){(∂ψ
∂x

)2
+
(∂ψ
∂y

)2
+
(∂ψ
∂z

)2}
+λR2ψ3 − A0

(
ψ − ψ3

6

)∣∣∣ ≤ A0ψ
5.

Hence (5) is the approximate solution of (3) with the accuracy A0ψ
5.

Now if we choose the constants α, β, γ for desired accuracy we obtain the approxi-
mate solution of Problem 1 and consequently of equation (4) i.e.

α = 16a0/a, β = 16a0/b, γ = 16a0/c, (8)

where
a20(1/a

2 + 1/b2 + 1/c2) = A0/256.
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It is clear from (8) that
U0|∂G < R10−7.

Conclusion. The approximate solutions of equation (4) is given by

U0 = R sin e−α|x|−β|y|−γ|z|−D,

where R is the given constant, the constants λ, α, β, γ > 0 satisfy the conditions (6),
(7), (8) and D,α, β, γ > 0 are chosen for desired accuracy.

In Fig. 1 and Fig. 2 the profile of U is plotted for the different parameters.

Fig. 1. R=1; z=5; D=4; α = β = γ = 1.

Fig. 2. R=1; z=10; D=4; α = β = γ = 1.
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