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NUMERICAL SOLUTION FOR J. BALL’S BEAM EQUATION WITH
VELOCITY-DEPENDENT EFFECTIVE VISCOSITY

Archil Papukashvili Giorgi Geladze Zurab Vashakidze Meri Sharikadze

Abstract. A mathematical model is formulated for an initial-boundary value problem associ-
ated with the J. Ball integro-differential equation, which serves as a mathematical description of
the dynamic state exhibited by a beam. The solution to this problem is approximated through
a combination of the Galerkin method, a stable symmetrical difference scheme, and the Jacobi
iteration method. This paper desires to present an approximate solution to a practical problem,
specifically focusing on the numerical results obtained from the initial-boundary value problem
pertaining to a specific iron beam. Notably, the effective viscosity of the material is considered
to be dependent on its velocity.
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1 Statement of the problem. Let us consider the nonlinear equation

utt (x, t) + δut (x, t) + γuxxxxt (x, t) + αuxxxx (x, t)

−

β + κ

L∫
0

u2
x (x, t) dx

 uxx (x, t)− σ

 L∫
0

ux (x, t) uxt (x, t) dx


×uxx (x, t) = f (x, t) , 0 < x < L, 0 < t ≤ T,

(1)

with the initial boundary conditions

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , (2)

u (0, t) = u (L, t) = 0, uxx (0, t) = uxx (L, t) = 0. (3)

In the given context, let α, γ, κ, σ, β, and let δ be constants, where the first four are positive
numbers. Furthermore, consider the functions u0(x) ∈ W 2

2 (0, L) and u1(x) ∈ L2(0, L),
satisfying the conditions u0(0) = u1(0) = u0(L) = u1(L) = 0. The right-hand side
function f(x, t) belongs to L2((0, L) × (0, T )). We assume the existence of a solution
u(x, t) ∈ W 2

2 ((0, L)× (0, T )) for the problem (1)-(3).
The present article serves as a direct continuation of previous works [1]-[4], which

focused on developing algorithms and performing corresponding numerical computations
for approximating solutions to nonlinear integro-differential equations of the Timoshenko
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type. In this particular study, we address an initial-boundary value problem associated
with the J. Ball integro-differential equation, which characterizes the dynamic state of a
beam (see [5]). To approximate the solution, we employ the Galerkin method, a stable
symmetric difference scheme, and the Jacobi iteration method. The algorithms proposed
in [2]-[3] have been validated through various tests. Additionally, this article, along with
[4], presents an approximate solution to a practical problem. Specifically, we provide
numerical results for the initial-boundary value problem concerning an iron beam, which
are presented in a tabular form.

The physical model utilized by J. Ball in his publication [5] is derived from the Hand-
book of Engineering Mechanics, authored by E. Mettler (see [6]). In this model, the
corresponding initial-boundary value problem for the integro-differential equation gov-
erning the behaviour of a beam (denoted as equation (1)) is formulated. The constants
α, γ, κ, σ, β, and δ present in the problem are defined as follows:

α =
E · I

ρ
, β =

E · A ·∆
L · ρ

, γ =
η · I
ρ

, κ =
E · A
2L · ρ

, σ =
Aη

L · ρ
.

Here, E denotes Young’s modulus, A represents the cross-sectional area, η signifies the
effective viscosity, I stands for the cross-sectional second moment of area, ρ corresponds
to the mass per unit length in the reference configuration, L symbolizes the length of
the beam, ∆ signifies the extension or change in the beam length, and δ refers to the
coefficient of external damping.

2 The numerical realization. To approximate the solutions to initial-boundary
value problems (1)-(3), a collection of programs was developed within the Maple software
environment. Subsequently, several numerical experiments were conducted to facilitate
this approximation process. The purpose of this paper is to present an approximate
solution to a practical problem. Specifically, the tables in this paper illustrate the results
obtained from numerical computations of the initial-boundary value problem concerning
an iron beam.

The present study investigates the issues pertaining to the initial-boundary value
problem of an iron beam, considering the following parameter values: length L = 1 m,
time T = 1 sec, temporal grid length τ = 0.05 sec, number of coordinate functions in
the Galerkin method n = 5, number of iterations niter = 5, Young’s modulus E =
1.9× 106 kg/ms2, density ρ = 7.874 g/cm3, spatial step size ∆ = 0.01 m, cross-sectional area
A = 0.01 m2, moment of inertia I = 1000 Pa.

In our investigation, we consider the case where the velocity-dependent effective vis-
cosity has the form η = (V0 + Kv · t)−1, with initial velocity V0 = 5 m/sec and coefficient
Kv = 2. The time variable t is bounded within the interval [0, 1]. Additional parameters
are defined as follows: α = 0.24613 × 106 · I, β = 241.3, γ = 0.12954 × I · η, κ = 12065,
σ = 0.0127 × η, and δ = 0. The initial functions are specified as u0(x) = sin

(
πx
L

)
and

u1(x) = 0, while the right-hand side function is denoted as f(x, t) ≡ 0.
As the velocity increases, the viscosity naturally decreases, resulting in an increase in

the bends, denoted as u(x, t), as confirmed by the numerical experiments presented in
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Table 1. In our study, we considered two main cases: (a) Simple model: In this approach,
we calculate the value of η for each specific t and obtain constant coefficients for all time
layers in the corresponding difference equations. (b) Complex model: In this case, the
coefficients in the difference equations depend on t for all time layers. For the simple
model, we specifically examined three cases: Case 1: t = 0, η = 1/5. Case 2: t = 0.5,
η = 1/6. Case 3: t = 1, η = 1/7. We compared the results obtained from these three
cases with those derived from the complex model (Case 4), considering different values
for the spatial and temporal variables.

t\x Case x = 0 x = 0.2 x = 0.4 x = 0.6 x = 0.8 x = 1
t = 0 1 0 0.587785 0.951057 0.951057 0.587785 0
t = 0 2 0 0.587785 0.951057 0.951057 0.587785 0
t = 0 3 0 0.587785 0.951057 0.951057 0.587785 0
t = 0 4 0 0.587785 0.951057 0.951057 0.587785 0

t = 0.25 1 0 5.289964 8.559341 8.559341 5.289964 0
t = 0.25 2 0 5.289980 8.559368 8.559368 5.289980 0
t = 0.25 3 0 5.289992 8.559387 8.559387 5.289992 0
t = 0.25 4 0 5.289967 8.559347 8.559347 5.289967 0
t = 0.5 1 0 11.167430 18.069281 18.069281 11.167430 0
t = 0.5 2 0 11.167504 18.069401 18.069401 11.167504 0
t = 0.5 3 0 11.167557 18.069487 18.069487 11.167557 0
t = 0.5 4 0 11.167459 18.069329 18.069329 11.167459 0
t = 0.75 1 0 17.044574 27.578700 27.578700 17.044574 0
t = 0.75 2 0 17.044747 27.578980 27.578980 17.044747 0
t = 0.75 3 0 17.044871 27.579180 27.579180 17.044871 0
t = 0.75 4 0 17.044670 27.578856 27.578856 17.044670 0
t = 1 1 0 22.921357 37.087535 37.087535 22.921357 0
t = 1 2 0 22.921670 37.088041 37.088041 22.921670 0
t = 1 3 0 22.921894 37.088403 37.088403 22.921894 0
t = 1 4 0 22.921577 37.087891 37.087891 22.921577 0

Table 1.
Conclusion

Based on the observed numerical experiments, it is evident that as the effective vis-
cosity, denoted by η, increases (or decreases), the corresponding numerical values of the
displacement function, u(x, t), for specific values of x and t exhibit a decreasing (or in-
creasing) trend. Specifically, when considering the case of velocity-dependent effective
viscosity, an increase in velocity leads to a decrease in viscosity, resulting in amplified
deflections (or bending) of the beam. Furthermore, for a fixed value of η, the numerical
values of the displacement function for a given x tend to increase as time t progresses. No-
tably, the numerical values of the displacement function at a particular t exhibit symmetry
with respect to the midpoint of the beam, located at x = L/2.
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