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ON THE SYSTEM OF MAXWELL’S NONLINEAR PARTIAL DIFFERENTIAL
EQUATIONS ?
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Abstract. Two one-dimensional models based on Maxwell’s well-known system of non-linear
partial differential equations are considered. Three schemes of construing exact solutions are
stated. Some properties of the corresponding initial-boundary value problems are studied.
Finite-difference scheme is built and its convergence is given.
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One-dimensional, two models based on Maxwell’s system [1] of nonlinear partial dif-
ferential equations (SNPDE) are considered.

Numerous scientific works are devoted to research of the SNPDE. One of such type
model, is the well-known system of Maxwell’s equations. In the quasi-stationary approx-
imation, this system has the form [1]:

∂H

∂t
= −rot (vmrotH) , (1)

∂θ

∂t
= vm (rotH)2 , (2)

where H = (H1, H2, H3) is a vector of the magnetic field, θ is temperature, vm charac-
terizes the electro-conductivity of the substance. As a rule, this coefficient is function
of argument θ. Equations (1) describe the process of diffusion of the magnetic field and
equation (2) change of the temperature at the expense of Joule’s heating.

System (1), (2) does not take into account many physical effects. For a more thorough
description, first of all it is desirable to take into consideration heat conductivity. In this
case together with (1), instead of (2) the following equation is considered [1]

∂θ

∂t
= vm (rotH)2 + div (kmgradθ) , (3)

where km = km(θ) is the coefficient of heat conductivity.
Note that, system (1), (2) can be reduced to an integro-differential form [2]. Many

works are devoted to the investigation and numerical resolution of initial-boundary value
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problems for (1), (2) and (1), (3) systems and for integro-differential models corresponding
to (1), (2) (see, for example, [2] - [12] and references therein).

For most SNPDEs, it is very difficult to find exact solutions and there is no general
solution available in a close form. Nevertheless, it is known that the exact solution for
SNPDEs is possible to construct in some particular cases.

Before attempting to solve a problem involving a PDE we would like to know if a
solution exists, and, if it exists, if the solution is unique. Besides, in problem involving
time, whether a solution exists t > 0 (global existence) or only up to a given value of t,
i.e. only for 0 < t < t0 (finite time blow-up, shock formation).

Our aim is to continue to study one-dimensional versions of systems (1), (2) and (1),
(3) in the case of the two-component magnetic field.

In the domain Q = (0; 1)× (0;∞), let us consider the following initial-boundary value
problem for Maxwell’s type one-dimensional (1), (2) system:

∂U

∂t
=

∂

∂x

(
Sα∂U

∂x

)
,

∂V

∂t
=

∂

∂x

(
Sα∂V

∂x

)
, (4)

∂S

∂t
= Sα

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
, (5)

U(0, t) = V (0, t) = 0, U(1, t) = ψ1 > 0, V (1, t) = ψ2 > 0, (6)

U(x, 0) = U0(x), V (x, 0) = V0(x), S(x, 0) = S0(x) > 0. (7)

Here α ∈ R;ψ1, ψ2 are constants, and U0(x), V0(x), S0(x) are the given smooth functions.
It is easy to check that if U0(x) = ψ1x, V0(x) = ψ2x and S0(x) = S0 = const > 0, then

when α 6= 1 the solution of problem (4) - (7) is:

U(, tx) = ψ1x, V (x, t) = ψ2x, S(x, t) =
[
S1−α

0 + (1− α)(ψ2
1 + ψ2

2)
] 1

1−α . (8)

As can be seen from (8), for a finite value of time, namely, when
t0 = S1−α

0 /[(ψ2
1 + ψ2

2)(α − 1))] and α > 1, then the function S(x, t) is not bounded.
The above example shows that (4) - (7) has no global solution at all. So, the solution
of problem (4) - (7) with smooth initial and boundary conditions can be blown up at a
finite time. The questions of unique solvability of some cases of these type problems are
studied in the abovementioned literature and in the number of other works as well. Using
[2] it is not difficult to prove the following statement.

Theorem 1. If |α| ≤ 1/2, then problem (4) - (7) has a unique solution.

Note that if we add to (6) the following boundary conditions:

∂S

∂x

∣∣∣∣
x=0

=
∂S

∂x

∣∣∣∣
x=1

= 0, (9)
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then U, V and S defined by formulas (8) are also solutions of the system with equations
(4) and

∂S

∂t
= Sα

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]

+
∂2S

∂x2
, (10)

with (6), (7), (9) boundary and initial conditions. We conclude that for α > 1, problem
(4), (6), (7), (9), (10) has no global solution either.

We used some exact solutions constructed by the following schemes for the systems
(4), (5) and (5), (10). First, the traveling wave solutions is sought: U = U(x − ξt),
V = V (x− ξt), S = S(x− ξt) where ξ is the speed of the wave. Two type exact solutions
for one-component magnetic field models (4), (5) and (4), (10) are also constructed. One
of such solution has the form: U = U(S) and S = S(∂U/∂x) The second one is the
solution found by the separation of variables U = w(x)p(t), V = g(x)q(t).

If we introduce the following notation E = S1/2 the problem (4) - (7) will be formulated
as follows: ∂U

∂t
− ∂

∂x

(
E2α∂U

∂x

)
= 0,

∂V

∂t
− ∂

∂x

(
E2α∂V

∂x

)
= 0, (11)

∂E

∂t
=

1

2
E2α−1

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
, (12)

U(0, t) = V (0, t) = 0, U(1, t) = ψ1, V (1, t) = ψ2, (13)

U(x, 0) = U0(x), V (x, 0) = V0(x), E(x, 0) = [S0(x)]
1/2. (14)

Let us construct grids on [0, 1]× [0, T ]. Divide the intervals [0, 1] and [0, T ] into equal
M and J parts respectively, and introduce the following notations [13]:

h = 1/M, τ = T/J, xi = ih, tj = jτ, uj
i = u(xi, tj),

ωh = {xi = ih, i = 0, 1, ...,M}, ω∗h = {xi = (i− 1/2)h, i = 0, 1, ...,M},
ωτ = {τj = jτ, i = 0, 1, ...,M}, ωhτ = ωh × ωτ ω∗hτ = ω∗h × ωτ ,

ux =
ui+1 − ui

h
, ux =

ui − ui−1

h
, ui = uj+1

i , ut =
ui+1 − uj

i

τ
.

Using usual notation and technique of building the finite difference schemes (see, for
example, [13]) let us construct an implicit finite difference scheme for problem (11)-(14):

uj
t =

(
e2αux

)
x
, vj

t =
(
e2αvx

)
x
, (15)

ej
t =

1

2
e2α−1

(
u2

x + v2
x

)
, (16)

uj
0 = vj

0 = 0, uj
M = ψ1, vj

M = ψ2, (17)

u0
i = U0(xi), v0

i = V0(xi), e0i = [S0(xi+1/2)]
1/2, i = 0, 1, ...,M − 1, (18)

where functions u and v are defined on the grid ωhτ and function e is defined on the grid
ω∗hτ . Here unindexed values mean that the grid functions are taken at the point (xi, tj+1)
or (xi−1/2, tj+1).

The approximations of the (15) - (18) scheme on the smooth solutions of problem (11)
- (14) are of order O(τ + h2). The following statement takes place [12].
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Theorem 2. If |α| ≤ 1/2, then the scheme (15)-(18) converges to a smooth solution
of problem (11) - (14) in the grid functions space L2 and the order of convergence is
O(τ + h2).

Statements analogical to the abovementioned Theorems 1, 2 are true for the second
problem (4), (6), (7), (9), (10) too.

The obtained results are a continuation of some studies of the papers [2]-[4], [12].
The proof of the theorems presented in this article, for wider nonlinearity, the descrip-

tion of algorithms for the approximate solution of the discussed problems, and the results
of the corresponding numerical experiments are planned in the following article.
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