Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 36, 2022

POSITIVE INTEGERS REPRESENTED BY SOME BINARY FORMS

Teimuraz Vepkhvadze

Abstract. The formulae for the average number of representations of positive integers by a genus of positive binary quadratic forms are given. It gives us the opportunity to characterize all the primes or the primes multiplied by natural powers of 2 which can be represented by some binary quadratic forms.

Keywords and phrases: Binary forms, representation of positive integers by binary quadratic form.

AMS subject classification (2010): E120, E125.

1 Introduction. Let r(n,t) denote a number of representations of a positive integer n by a positive quadratic form $f = ax^2 + bxy + cy^2$. If the genus of the quadratic form f contains one class, then according to Newman Hall's theorem [1], the problem of obtaining exact formulas for r(n; f) is solved completely. It follows from the results of [2] and [3] that half of "the sum $\rho(n, f)$ of a generalized singular series" that corresponds to a binary quadratic form f is equal to the average number of representations of a positive integer n by the genus containing this quadratic form. In particular, if a quadratic form belongs to a one-class genus, then for positive integer n

$$r(n;f) = \frac{1}{2}\rho(n;f).$$
 (1)

The function $\rho(n; f)$ can be calculated as follows (see, [4], pp. 79, 80).

Theorem 1. Let $f = ax^2 + bxy + cy^2$ be a primitive positive binary quadratic form with discriminant $d = b^2 - 4ac$, (a, d) = 1, $\Delta = -\frac{d}{4}$ if $2 \mid b$, $\Delta = -d$ if $2 \nmid b$; $\Delta = r^2 \omega$ (ω is a square free number), $n = 2^{\alpha}m \ (2 \nmid m)$, $\Delta = 2^{\gamma}\Delta_1 \ 2 \nmid \Delta_1$, $p^l \|\Delta, p^{\beta}\|n$, $u = \prod_{\substack{p \mid n \\ p \mid 2\Delta}} p^{\beta}$, then

$$\rho(n;f) = \frac{\pi \chi_2 \prod_{p|\Delta,p>2} \chi_p \sum_{\nu|u} \left(\frac{-\Delta}{\nu}\right)}{\Delta^{\frac{1}{2}} \prod_{p|r,p>2} \left(1 - \left(\frac{-\omega}{p}\right)\frac{1}{p}\right) L(1,-\omega)}.$$

Here

$$\chi_p = \left(1 + \left(\frac{p^{-\beta na}}{p}\right)\right) p^{\frac{1}{2}\beta} \text{ if } l \ge \beta + 1, \ 2 \mid \beta;$$

$$= \left(1 - \left(\frac{-p^{-l}\Delta}{p}\right)\frac{1}{p}\right)\left\{1 + \left(1 + \left(\frac{-p^{-l}\Delta}{p}\right)\right)\frac{\beta - l}{2}\right\}p^{\frac{1}{2}l} \text{ if } l \leq \beta, \ 2 \mid l, \ 2 \mid \beta; \\ = \left(1 - \left(\frac{-p^{-l}\Delta}{p}\right)\frac{1}{p}\right)\left(1 + \left(\frac{-p^{-l}\Delta}{p}\right)\right)\frac{\beta - l + 1}{2}p^{\frac{1}{2}l} \text{ if } l \leq \beta, \ 2 \mid l, \ 2 \nmid \beta; \\ = \left(1 + \left(\frac{p^{-l}\Delta}{p}\right)^{\beta + 1}\left(\frac{p^{-(\beta + l)}na\Delta}{p}\right)\right)p^{\frac{1}{2}(l-1)} \text{ if } l \leq \beta, \ 2 \nmid l; \\ = 0 \text{ if } l \geq \beta + 1, \ 2 \nmid \beta;$$

$$\begin{split} & \text{for } 2 \mid d, \\ & \chi_2 = 2^{\frac{\alpha}{2}+2} \text{ if } 2 \mid \gamma, \ 0 \leq \alpha \leq \gamma - 3, \ 2 \mid \alpha, \ m \equiv a(\text{mod } 8); \\ & = 0 \text{ if } 2 \mid \gamma, \ 0 \leq \alpha \leq \gamma - 3, \ 2 \mid \alpha, \ 2 \mid \gamma, \ m \not\equiv a(\text{mod } 8); \text{ or } 0 \leq \alpha \leq \gamma - 1, \ 2 \nmid \alpha; \\ & = (1 + (-1)^{\frac{1}{2}(m-\alpha)}) 2^{\frac{\alpha}{2}} \text{ if } 2 \mid \gamma, \ \alpha = \gamma - 2; \\ & = (1 + (-1)^{\frac{1}{2}(m-\alpha)}) 2^{\frac{\gamma}{2}} \text{ if } 2 \mid \gamma, \ \alpha \geq \gamma, \ 2 \mid \alpha, \ \Delta_1 \equiv 1(\text{mod } 4); \\ & = 2^{\frac{\gamma}{2}} \text{ if } 2 \mid \gamma, \ \alpha = \gamma, \ \Delta_1 \equiv -1(\text{mod } 4); \\ & = (2 - (-1)^{\frac{1}{4}(\Delta_1 + 1)}) 2^{\frac{\gamma}{2}} + (1 + (-1)^{\frac{1}{4}(\Delta_1 + 1)}) (\alpha - \gamma - 2) 2^{\frac{\gamma}{2} - 1} \\ & \text{ if } 2 \mid \gamma, \ \alpha > \gamma; \ 2 \mid \alpha, \ \Delta_1 \equiv -1(\text{mod } 4); \\ & = (1 + (-1)^{\frac{1}{4}(\Delta_1 - 1) + \frac{1}{2}(m-\alpha)}) 2^{\frac{\gamma}{2}} \text{ if } 2 \mid \gamma, \ \alpha \geq \gamma + 1, \ 2 \nmid \alpha, \ \Delta_1 \equiv -1(\text{mod } 4); \\ & = (1 + (-1)^{\frac{1}{4}(\Delta_1 + 1)}) (\alpha - \gamma - 1) 2^{\frac{\gamma}{2} - 1} \text{ if } 2 \mid \gamma, \ \alpha \geq \gamma + 1, \ 2 \nmid \alpha, \ \Delta_1 \equiv -1(\text{mod } 4); \\ & = 2^{\frac{\alpha}{2} + 2} \text{ if } 0 \leq \alpha \leq \gamma - 3, \ 2 \nmid \gamma, \ 2 \mid \alpha, \ m \equiv a(\text{mod } 8); \\ & = 0 \text{ if } 0 \leq \alpha \leq \gamma - 3, \ 2 \nmid \gamma, \ 2 \mid \alpha, \ m \not\equiv a(\text{mod } 8); \\ & = 0 \text{ if } 0 \leq \alpha \leq \gamma - 3, \ 2 \nmid \gamma, \ 2 \mid \alpha, \ m \not\equiv a(\text{mod } 8); \\ & = (1 + (-1)^{\frac{1}{4}(m-a)}) 2^{\frac{1}{2}(\gamma - 1)} \text{ if } 2 \nmid \gamma, \ \alpha \geq \gamma - 1, \ 2 \mid \alpha, \ m \equiv -a(\text{mod } 4); \\ & = (1 + (-1)^{\frac{1}{4}(m-a)}) 2^{\frac{1}{2}(\gamma - 1)} \text{ if } 2 \nmid \gamma, \ \alpha \geq \gamma, \ 2 \restriction \alpha, \ m \equiv -a(\text{mod } 4); \\ & = (1 + (-1)^{\frac{1}{4}(m+a) + \frac{1}{2}(m-\Delta_1 a)}) 2^{\frac{1}{2}(\gamma - 1)} \text{ if } 2 \nmid \gamma, \ \alpha \geq \gamma, \ 2 \restriction \alpha, \ m \equiv -\Delta_1 a(\text{mod } 4); \\ & = (1 + (-1)^{\frac{1}{4}(m+\Delta_1 a) + \frac{1}{2}(m-a)}) 2^{\frac{1}{2}(\gamma - 1)} \text{ if } 2 \nmid \gamma, \ \alpha \geq \gamma, \ 2 \restriction \alpha, \ m \equiv -\Delta_1 a(\text{mod } 4); \\ & = (1 + (-1)^{\frac{1}{4}(m+\Delta_1 a) + \frac{1}{2}(m-a)}) 2^{\frac{1}{2}(\gamma - 1)} \text{ if } 2 \nmid \gamma, \ \alpha \geq \gamma, \ 2 \restriction \alpha, \ m \equiv -\Delta_1 a(\text{mod } 4); \\ & = (1 + (-1)^{\frac{1}{4}(m+\Delta_1 a) + \frac{1}{2}(m-a)}) 2^{\frac{1}{2}(\gamma - 1)} \text{ if } 2 \restriction \gamma, \ \alpha \geq \gamma, \ 2 \restriction \alpha, \ m \equiv -\Delta_1 a(\text{mod } 4); \\ & for \ 2 \nmid d, \\ \chi_2 = 3 \text{ if } 2 \mid \alpha, \ \Delta \equiv 3(\text{mod } 8); \end{cases}$$

 $= 0 \text{ if } 2 \nmid \alpha, \quad \Delta \equiv 3 \pmod{8};$ $= \alpha + 1 \text{ if } \Delta \equiv 7 \pmod{8};$

The values of $L(1; -\omega)$ can be calculated by the formulas of [5] (Theorem 15). Using the Theorem 1 we can characterize all the primes which can be represented by the binary form belonging to one-class genera. This is motivated by a problem in number theory that dates back at least to Fermat: for a given n, characterizing all the primes which can be written $p = x^2 + ny^2$ for some integers x, y. Euler studied the problem extensively, and was able to solve it for n = 1, 2, 3, 4, giving the first rigorous proofs of the following four theorems of Fermat (see, [6], 1–16]).

$$p = x^{2} + y^{2} \text{ for some } x, y \in \mathbb{Z} \Leftrightarrow p = 2 \text{ or } p \equiv 1 \pmod{4},$$

$$p = x^{2} + 2y^{2} \text{ for some } x, y \in \mathbb{Z} \Leftrightarrow p = 2 \text{ or } p \equiv 1, 3 \pmod{8},$$

$$p = x^{2} + 3y^{2} \text{ for some } x, y \in \mathbb{Z} \Leftrightarrow p = 3 \text{ or } p \equiv 1 \pmod{3},$$

$$p = x^{2} + 4y^{2} \text{ for some } x, y \in \mathbb{Z} \Leftrightarrow p \equiv 1 \pmod{4}.$$

The similar results in case of n = 5, 6, 7 are given in [6].

In this paper, we show how the formulas of Theorem 1 can be used to characterize all the primes represented by the binary forms belonging to one-class genera; we introduce this method in the case of binary forms of discriminants d = -32, -36 and -40.

In [7] we showed that the problem of obtaining formulas for the number of representations of numbers by binary forms belonging to multi-class genera can be easily reduced to the case of one-class genera. It gives us the opportunity to characterize all the products of the primes by the natural powers of the number 2 which can be represented by binary forms belonging to multi-class genera. This method is illustrated in the case of binary forms of the discriminant -44.

Basic results. The set of binary forms with the discriminant -32 splits into two genera, each consisting of one class with reduced forms respectively, $f_1 = x^2 + 8y^2$ and $f_2 = 3x^2 + 2xy + 3y^2$.

Furthermore, the set of binary forms with the discriminant -36 splits into two genera, each consisting of one class with reduced forms, respectively, $f_3 = x^2 + 9y^2$ and $f_4 = 2x^2 + 2xy + 5y^2$.

The set of binary forms of the discriminant -40 splits into two genera, each consisting of one class with reduced forms respectively, $f_5 = x^2 + 10y^2$ and $f_6 = 2x^2 + 5y^2$. The corresponding representation functions can be calculated by the formulas of Theorem 1. According to this theorem we have the following result.

Theorem 2. a prime p is of the form $x^2 + 8y^2$ for some $x, y \in \mathbb{Z}$ if and only if $p \equiv 1 \pmod{8}$. A prime p is of the form $3x^2 + 2xy + 3y^2$ for some $x, y \in \mathbb{Z}$ if and only if $p \equiv 3 \pmod{8}$. A prime p is represented by $x^2 + 9y^2$ if and only if $p \equiv 1 \pmod{12}$. A prime p is represented by $2x^2 + 2xy + 5y^2$ if and only if $p \equiv 5 \pmod{40}$ or p = 2. A prime p is represented by $x^2 + 10y^2$ if and only if $p \equiv 1 \pmod{40}$ or $p \equiv 9 \pmod{40}$ or $p \equiv 11 \pmod{40}$ or $p \equiv 19 \pmod{40}$. A prime p is represented by $2x^2 + 5y^2$ if and only if $p \equiv 37 \pmod{40}$ or p = 5 or p = 2.

The set of binary forms with discriminant -44 forms one genus, which consists of three classes with reduced forms $f_8 = x^2 + 11y^2$, $f_9 = 3x^2 + 2xy + 4y^2$ and $f_{10} = 3x^2 - 2xy + 4y^2$. Let $n = 2^{\alpha}p$ ($\alpha \in N$, p is a prime number). Then, according to Theorem 2 of the paper [7], $r(2^{\alpha}p; f_8) = r(2^{\alpha}p; f_9) = r(2^{\alpha}p; f_{10}) = r(2^{\alpha-2}p; f)$, where $\alpha \ge 2$ and $f = x^2 + xy + 3y^2$ is a binary form belonging to a one-class genera.

It is clear, that

$$r(2^{\alpha}p; f_8) = r(2^{\alpha}; f_9) = 0, \text{ if } 2 \nmid \alpha.$$

It follows from Theorem 1, that for any number $2^{\alpha-2}p$ $(\alpha - 2 \ge 0, \alpha \in N, 2 \mid (\alpha - 2), p$ is a prime number), $r(2^{\alpha-2}p; f) \ne 0$ if and only if $(\frac{p}{11}) = 1$, or p = 11.

The arguments above yield

Theorem 3. For a given prime p and natural α a number $2^{\alpha}p$ is represented by any form of the discriminant -44 if and only if $2 \mid \alpha$ and $p \equiv 3, 4, 5, 9 \pmod{11}$ or p = 11 and $2 \mid \alpha$.

REFERENCES

- HALL, N. A. The number of representations function for binary quadratic forms. Amer. J. Math., 62 (1940), 589-598.
- VEPKHVADZE, T. V. Modular properties of theta-functions and representation of numbers by positive quadratic forms. *Georgian Math. J.*, 4, 4 (1997), 385-400.
- 3. VEPKHVADZE, T. V. On a formula of Siegel (Russian). Acta Arith., 40, 2 (1981/82), 125-142.
- VEPKHVADZE, T. Positive integers not represented by a binary quadratic form. Rep. Enlarged Sess. Semin. I. Vekua Appl. Math., 33 (2019), 78-81.
- 5. LOMADZE, G. A. On the representation of numbers by positive binary diagonal quadratic forms (Russian). *Mat. Sb.* (N.S.), 68, (110) (1965), 282-312.
- 6. KAPLAN J. Binary Quadratic Forms Theory and Primes of the Form $p = x^2 + ny^2$, July 28, 2014.
- VEPKHVADZE, T. The number of representations of some positive integers by binary forms. Acta Arith. 183, 3 (2018), 277-283.

Received 23.05.2022; revised 29.07.2022; accepted 12.09.2022.

Author(s) address(es):

Teimuraz Vepkhvadze Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University I. Chavchavadze Ave. 1, 0179 Tbilisi, Georgia E-mail: t-vepkhbadze@hotmail.com