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POSITIVE INTEGERS REPRESENTED BY SOME BINARY FORMS

Teimuraz Vepkhvadze

Abstract. The formulae for the average number of representations of positive integers by a
genus of positive binary quadratic forms are given. It gives us the opportunity to characterize
all the primes or the primes multiplied by natural powers of 2 which can be represented by some
binary quadratic forms.
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1 Introduction. Let r(n, t) denote a number of representations of a positive in-
teger n by a positive quadratic form f = ax2 + bxy + cy2. If the genus of the quadratic
form f contains one class, then according to Newman Hall’s theorem [1], the problem of
obtaining exact formulas for r(n; f) is solved completely. It follows from the results of [2]
and [3] that half of ”the sum ρ(n, f) of a generalized singular series” that corresponds to
a binary quadratic form f is equal to the average number of representations of a positive
integer n by the genus containing this quadratic form. In particular, if a quadratic form
belongs to a one-class genus, then for positive integer n

r(n; f) =
1

2
ρ(n; f). (1)

The function ρ(n; f) can be calculated as follows (see, [4], pp. 79, 80).

Theorem 1. Let f = ax2 + bxy + cy2 be a primitive positive binary quadratic form with
discriminant d = b2 − 4ac, (a, d) = 1, ∆ = −d

4
if 2 | b, ∆ = −d if 2 - b; ∆ = r2ω (ω is a

square free number), n = 2αm (2 - m), ∆ = 2γ∆1 2 - ∆1, pl‖∆, pβ‖n, u =
∏
p|n

p|2∆

pβ, then

ρ(n; f) =

πχ2

∏
p|∆,p>2

χp

∑
ν|u

(−∆
ν

)

∆
1
2

∏
p|r,p>2

(1− (−ω
p

)1
p
)L(1,−ω)

.

Here

χp =
(
1 +

(p−βna

p

))
p

1
2
β if l ≥ β + 1, 2 | β;
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){
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}
p

1
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=
(
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p
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p

)(
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1
2
l if l ≤ β, 2 | l, 2 - β;

=
(
1 +
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p
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p

))
p

1
2
(l−1) if l ≤ β, 2 - l;

= 0 if l ≥ β + 1, 2 - β;

for 2 | d,

χ2 = 2
α
2
+2 if 2 | γ, 0 ≤ α ≤ γ − 3, 2 | α, m ≡ a(mod 8);

= 0 if 2 | γ, 0 ≤ α ≤ γ − 3, 2 | α, 2 | γ, m 6≡ a(mod 8); or 0 ≤ α ≤ γ − 1, 2 - α;

=
(
1 + (−1)

1
2
(m−α)

)
2

α
2 if 2 | γ, α = γ − 2;

=
(
1 + (−1)

1
2
(m−α)

)
2

γ
2 if 2 | γ, α ≥ γ, 2 | α, ∆1 ≡ 1(mod 4);

= 2
γ
2 if 2 | γ, α = γ, ∆1 ≡ −1(mod 4);

=
(
2− (−1)

1
4
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2

γ
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1
4
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γ
2
−1

if 2 | γ, α > γ; 2 | α, ∆1 ≡ −1(mod 4);

=
(
1 + (−1)

1
4
(∆1−1)+ 1

2
(m−a)

)
2

γ
2 if 2 | γ, α ≥ γ + 1, 2 - α, ∆1 ≡ 1(mod 4);

=
(
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1
4
(∆1+1)

)
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γ
2
−1 if 2 | γ, α ≥ γ + 1, 2 - α, ∆1 ≡ −1(mod 4);

= 2
α
2
+2 if 0 ≤ α ≤ γ − 3, 2 - γ, 2 | α, m ≡ a(mod 8);

= 0 if 0 ≤ α ≤ γ − 3, 2 - γ, 2 | α, m 6≡ a(mod 8) or 0 ≤ α ≤ γ − 2, 2 - γ, 2 - α;

=
(
1 + (−1)

1
4
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)
2

1
2
(γ−1) if 2 - γ, α ≥ γ − 1, 2 | α, m ≡ a(mod 4);

=
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1
4
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2
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1
2
(γ−1) if 2 - γ, α ≥ γ − 1, 2 | α, m ≡ −a(mod 4);

=
(
1 + (−1)

1
4
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)
2

1
2
(γ−1) if 2 - γ, α ≥ γ, 2 - α, m ≡ ∆1a(mod 4);

=
(
1 + (−1)

1
4
(m+∆1a)+ 1

2
(m−a)

)
2

1
2
(γ−1) if 2 - γ, α ≥ γ, 2 - α, m ≡ −∆1a(mod 4);

for 2 - d,

χ2 = 3 if 2 | α, ∆ ≡ 3(mod 8);

= 0 if 2 - α, ∆ ≡ 3(mod 8);

= α + 1 if ∆ ≡ 7(mod 8);

The values of L(1;−ω) can be calculated by the formulas of [5] (Theorem 15). Using
the Theorem 1 we can characterize all the primes which can be represented by the binary
form belonging to one-class genera. This is motivated by a problem in number theory
that dates back at least to Fermat: for a given n, characterizing all the primes which can
be written p = x2 + ny2 for some integers x, y. Euler studied the problem extensively,
and was able to solve it for n = 1, 2, 3, 4, giving the first rigorous proofs of the following
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four theorems of Fermat (see, [6], 1–16]).

p =x2 + y2 for some x, y ∈ Z ⇔ p = 2 or p ≡ 1(mod 4),

p =x2 + 2y2 for some x, y ∈ Z ⇔ p = 2 or p ≡ 1, 3(mod 8),

p =x2 + 3y2 for some x, y ∈ Z ⇔ p = 3 or p ≡ 1(mod 3),

p =x2 + 4y2 for some x, y ∈ Z ⇔ p ≡ 1(mod 4).

The similar results in case of n = 5, 6, 7 are given in [6].
In this paper, we show how the formulas of Theorem 1 can be used to characterize all

the primes represented by the binary forms belonging to one-class genera; we introduce
this method in the case of binary forms of discriminants d = −32,−36 and −40.

In [7] we showed that the problem of obtaining formulas for the number of representa-
tions of numbers by binary forms belonging to multi-class genera can be easily reduced to
the case of one-class genera. It gives us the opportunity to characterize all the products
of the primes by the natural powers of the number 2 which can be represented by binary
forms belonging to multi-class genera. This method is illustrated in the case of binary
forms of the discriminant −44.

Basic results. The set of binary forms with the discriminant −32 splits into two
genera, each consisting of one class with reduced forms respectively, f1 = x2 + 8y2 and
f2 = 3x2 + 2xy + 3y2.

Furthermore, the set of binary forms with the discriminant −36 splits into two genera,
each consisting of one class with reduced forms, respectively, f3 = x2 + 9y2 and f4 =
2x2 + 2xy + 5y2.

The set of binary forms of the discriminant −40 splits into two genera, each consisting
of one class with reduced forms respectively, f5 = x2 + 10y2 and f6 = 2x2 + 5y2. The
corresponding representation functions can be calculated by the formulas of Theorem 1.
According to this theorem we have the following result.

Theorem 2. a prime p is of the form x2 + 8y2 for some x, y ∈ Z if and only if
p ≡ 1(mod 8). A prime p is of the form 3x2 + 2xy + 3y2 for some x, y ∈ Z if and
only if p ≡ 3(mod 8). A prime p is represented by x2 + 9y2 if and only if p ≡ 1(mod 12).
A prime p is represented by 2x2 + 2xy + 5y2 if and only if p ≡ 5(mod 12) or p = 2. A
prime p is represented by x2 + 10y2 if and only if p ≡ 1(mod 40) or p ≡ 9(mod 40) or
p ≡ 11(mod 40) or p ≡ 19(mod 40). A prime p is represented by 2x2 + 5y2 if and only
if p ≡ 7(mod 40) or p ≡ 13(mod 40) or p ≡ 23(mod 40) or p ≡ 37(mod 40) or p = 5 or
p = 2.

The set of binary forms with discriminant −44 forms one genus, which consists of three
classes with reduced forms f8 = x2 +11y2, f9 = 3x2 +2xy+4y2 and f10 = 3x2−2xy+4y2.
Let n = 2αp (α ∈ N , p is a prime number). Then, according to Theorem 2 of the paper [7],
r(2αp; f8) = r(2αp; f9) = r(2αp; f10) = r(2α−2p; f), where α ≥ 2 and f = x2 + xy + 3y2 is
a binary form belonging to a one-class genera.

It is clear, that
r(2αp; f8) = r(2α; f9) = 0, if 2 - α.
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It follows from Theorem 1, that for any number 2α−2p (α− 2 ≥ 0, α ∈ N , 2 | (α− 2),
p is a prime number), r(2α−2p; f) 6= 0 if and only if ( p

11
) = 1, or p = 11.

The arguments above yield

Theorem 3. For a given prime p and natural α a number 2αp is represented by any form
of the discriminant −44 if and only if 2 | α and p ≡ 3, 4, 5, 9(mod 11) or p = 11 and 2 | α.
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