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TO NUMERICAL REALIZATION OF HIERARCHICAL MODELS OF I.VEKUA

Tamaz Vashakmadze

Abstract. Problems of numerical realization of I. Vekua’s model for the one-dim case are
studied. For constructing the model, as is well known, the Legendre polynomial system is used.
The same problem is solved too when the basis is another- full system that satisfies Neyman-type
boundary conditions. In both cases algorithms are created by which constructing solutions are
equal. In the general case, Vekua-type models have investigated the problems of satisfying the
boundary conditions on the face of surfaces.
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The PSBC on the face of surfaces for elastic thin-walled structures has a sufficiently
deep and long history and we retained the essential remarks of I. Vekua [1] with respect to
these problems. He introduced new expressions of type [1, (7.2.c)] which are “coordinated
with the boundary conditions (BC) on the lateral surfaces, which form the 2-dim boundary
value problems. Then Vekua constructed approximate solutions of displacement vector u
and stress tensor series of Legendre polynomial system which are not compatible with
the boundary data on the face of surfaces S±. These approaches may turn out to be
rather rough values near the face of surfaces.”[1,pg. 79] For refined theories in a wide
sense [2, Ch.I] the PSBC are studied in very different kinds. For example, by E.Reissner
[3] and S.Ambartsumian [4] models, a priori satisfied BC on S±, but we underline [5,
p.49] that these ones are artificial and obscure. We cited also the article [6], where BC
on the face of surfaces is a priori satisfied exactly. It is evident that the way used in
[1] represents the incompletely Bubnov-Galerkin method as the BVPs for elastic plates
contain the equilibrium equations and BCs on the lateral faces S and surfaces S±. The
last BCs in [1] are neglected but they are used in constructing two-dim systems of partial
linear differential equations (PDE) corresponding to the following 3-dim systems of PDEs
[details 1, Ch.1, § 2]:
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Now, following [7, 2], for the stress vector acted on S± we use a priori assumptions:
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Elastic plates with constant thickness (2) have such simple forms in linear as well in
nonlinear cases:
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1

2h

[
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]
+

∞∑
k=1

k

T3(x, y) [pk+1(z/h)− pk−1(z/h] . (3)

Ti3(x, y,±h) = σi3 + σi3ui,3 = g±i , (x, y,±h) ∈ S±.

From (3) also follows the possible application to arbitrary model from to refined theo-
ries in the wide sense as well as to theories of [3,4]too without some artificial restrictions
of type

σ33,3(x, y,± h) = 0 , σij,j = fi, (x, y,±h) ∈ S±, σij ∈ C3(D(x, y)× [−h, h]).

Then the usefulness of the Vekua-Rektorys-Galerkin type method for (3) and BCs on
Swith cutting BCs (3) we get approximate two-dim models for any integer N (details [2,
Ch.II, 7].

To prove this fact we use the excellent examples of [8] and consider when (1) is a 1-dim
elastic beam and let uα = εαi = σαi = Φα = 0, h = 1, σ33 = (λ + 2µ)u3,3. Then we get the
following BVP:

−u′′(x) = f(x),−1 < x < 1, u′(−1) = α, u′(1) = β. (4)

If z(x) = u(x)− α+β
2

x− β−α
4

x2 +u0, the problem (4) is equivalent to the following one:

−z′′(x) = f (x) +
β − α

2
, z′(−1) = z′(1) = 0. (5)

Let us consider two systems:

{pn(x)}n=0,1,... pn(±1) = (±1)n − are Legerndre polynomials;
q0(x) = −1,

q1(x) = −3
∫ 1
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.

q′n(x) = −(pn+1 − pn−1).

Now consider two examples.
Example 1.
Let us find the solution of (5) by the set z(x) =

∑∞
k=1 zkqk(x) (having a unique solution

if
∫ 1

−1
z(x)dx = 0, i.e.z0 = 0).Then by projective method we have [6]: z(x) = 1

3
q1(x) =

− 1
15

p3 + 6
15

p1,−z′′ = p1, z
′(±1) = 0.

Example 2.
Let us consider BVP (4), when f(x) = p1(x), α = β. The solution of this BVP is denoted
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as v(x) =
∑∞

n=1 vnpn(x) + u0. Then if we used the direct method from [6] with respect to
Vekua system[1] for this case we have:v(x) =

(
2
5
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)
p1(x)− 1

15
p3(x) + u0.

As we see, both solutions:u(x) = z(x) + αx + u0 =
(

2
5

+ α
)
p1 − 1

15
p3 + u0 = v(x)

are equal. The reason for the equality of these solutions is the following. It is true that
the Legendre polynomial system is not presented as a basic system [8], really the first
equation of the Vekua algebraic system was formed as a scalar product of equation (4)
and p0 = 1. But resulting expression represent the necessary and sufficient conditions for
the existence of the unique (by to within of a constant summand) solution to Neyman’s
problem. Now we consider the case when in (4):f(x) = 1

2
f0 = const, β−α+f0 6= 0,i.e.the

BVP (4) is unsolvability. In this case, let u(x) =
∑∞

n=0 unpn(x). Then Vekua’s system
(n 6= 0) can be rewritten in the form:

(−u′′(t), p2n(x)) = 0, (n = 1, 2, ..).
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From (6) and (7) immediately follows:
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1
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(β − α) , u2k = 0, (k = 2, 3, ...);
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1
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(α + β) , u2k+1 = 0, (k = 1, 2, ...),
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1

6
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2
(β − α); u′(−1) = α.u′(1) = β.

At last it should be stressed that if α = β, then we have

u(x) = u0 + αp1(x) .i.e. − u′′ = 0,

instead of −u′′(x) = 0.5f0. We must remember the words [1, p. 52]:
The (7. 18h, i) is a strong elliptic system of PDEs for N ≥ 3 “but we don’t rewrite

this one in a more expanded form and shall not deal with the investigation of problems
of existence and uniqueness in the general form [1]”.
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