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THE PERIODIC PROBLEM FOR ONE CLASS OF FIRST ORDER HYPERBOLIC
SYSTEMS
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Abstract. For one class of normally hyperbolic systems of the first order, a periodic problem
with respect to a spatial variable is considered. The correctness of the problem is proved, and
in some cases the solution of the periodic problem is written out explicitly.
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In the half-strip D : 0 < x < l, t > 0 of the plane Qxt for a first-order linear system

∂u

∂t
+ A

∂u

∂x
+Bu = F (x, t), (x, t) ∈ D, (1)

where A and B are n-order quadratic matrices, F = (F1, ..., Fn) is given, while u =
(u1, ..., un) are unknown vector-functions, consider a periodic problem set as follows: in
the domain D find a regular solution u = (u1, ..., un) to system (1) satisfying the initial
condition

u(x, 0) = ϕ(x), 0 ≤ x ≤ l, (2)

and the periodicity condition

u(0, t) = u(l, t), t ≥ 0, (3)

with respect to the variable x.
Note that problem (1)-(3) is a special case of non-local problems. Nonlocal problems

for partial differential equations and systems of various structures have been considered
in numerous papers (see, for example, [1]-[9] and the literature cited therein).

Below we consider the case when (1) is a normally hyperbolic system: system (1) is
called normally hyperbolic at a point (x, t) if the characteristic determinant p(x, t, λ) =
det(λI +A) of this system at this point with respect to the variable λ has only real roots
λ1, ..., λl and at the same time

ki = n− rank(λiI + A(x, t)), i = 1, ..., l, (4)

where ki is the multiplicity of the root λi, i = 1, ..., l, and I is the n-order unit matrix.
It should be noted that a strictly hyperbolic system, i.e., when all roots of the charac-

teristic determinant p(x, t, λ) are real and simple, is a special case of normally hyperbolic
system.
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Let us assume below that A is a constant matrix and system (1) is normally hyperbolic.
Denote by Vi the kernel of the matrix operator Qi = λiI + A, acting in the space Rn ,
whose dimension, by virtue of equality (4), is equal to ki, and through νij, j = 1, ..., ki,
we denote the basis of this kernel. Thus,

Qiνij = (I + A)νij = 0, j = 1, ..., ki,

and vectors νi1, ..., νiki
are linearly independent. Whence it follows that νij is an eigen-

vector corresponding to the eigenvalue −λi.
It is proved that in the case of normal hyperbolicity of system (1) the square matrix

K of order n whose columns consist of the vectors νij, i = 1, ..., l; j = 1, ..., ki, i.e.,
K = (ν11...ν1k1 ...νl1...νlkl

) is non-degenerate and the following important equality

K−1AK = D0 (5)

holds, where D0 is a diagonal matrix whose (mi + j)-th element on the diagonal and
m1 = 0,mi =

∑i−1
s=1 ki, i > 1, j = 1, ..., ki, is equal to the number −λi. i.e.

D0 = diag(−λ1, ...,−λ1, ...,−λl, ...,−λl). (6)

If we pass to a new unknown vector ν = (ν1, ..., νn) according to the equality u = Kν
and multiply from the left both parts of the system (1) by the matrix K−1, then by virtue
of (5) we get

∂ν

∂t
+D0

∂ν

∂x
+ Cν = F1(x, t), (x, t) ∈ D, (7)

where C = K−1BK, F1 = K−1F .
Taking into account equalities (6), we rewrite system (7) in the form of separate scalar

equations

∂νmi+j

∂t
− λi

∂νmi+j

∂x
+

n∑
i=1

cmi+j,sνs = F1,mi+j, (8)

and conditions (2) and (3) will take the following form

νmi+j(x, 0) = ψmi+j(x), 0 ≤ x ≤ l, (9)

νmi+j(0, t) = νmi+j(l, t), t ≥ 0, (10)

i = 1, ..., l; j = 1, ..., ki,

where ψ = K−1ϕ.

Remark 1. Suppose λi < 0 for a fixed i, 1 ≤ i ≤ l. Divide the domain D : 0 < x <
l, t > 0 into two parts D+ : D ∩ {x+ λit ≥ 0} and D− : D ∩ {x+ λit < 0}. It is easy to
check that if the function w(x, t) satisfies the equation ∂w

∂t
− λi

∂w
∂x

= f(x, t) in the domain
D, and the initial condition w(x, t) = ω(x) on the segment [0, l] of the axis Ox and the
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boundary condition w(0, t) = µ(t) on the positive part of the Ot axis, then this function
is given in the area D by the following formulas

w(x0, t0) = w(x0 + λit0) +

∫ t0

0

f(x0 + λit0 − λit, t)dt, for P (x0, t0) ∈ D̄+, (11)

w(x0, t0) = µ(t0 +
x0

λi

) +

∫ t0

t0+
x0
λi

f(x0 + λit0 − λit, t)dt, for P (x0, t0) ∈ D̄−. (12)

Similar formulas are valid when λi > 0 and λi = 0.

By integrating the equations (8) along the corresponding characteristics of the system
(1), and taking into account formulas (11), (12), as well as initial conditions (9) and peri-
odicity conditions (10), problem (1) - (3) is equivalently reduced to a system of Volterra
- type integral equations which is uniquely solvable in the class C1(D̄).

Thus, the following theorem is true.

Theorem. Let A be a constant matrix and let system (1) be normally hyperbolic,
B ∈ C1(D̄). Then for any vector functions F ∈ C1(D̄) and ϕ ∈ C1([0, l]), where ϕ satisfies
the matching condition ϕ(0) = ϕ(l), there exists a unique regular solution u ∈ C1(D̄) of
the problem (1) - (3).

Remark 2. Under the conditions of the above theorem, when B = 0 and F = 0, the
unique regular solution u ∈ C1(D̄) of the problem (1) - (3) can be written explicitly:

u(x, t) =
l∑

i=1

ki∑
j=1

νmi+j(x, t)νij, (13)

where

νmi+j(x, t) =


ψi((m− 1)l + x+ λit),

when − λit− (m− 1)l < x < l, m−1
−λi

l < t < m
−λi

l,

ψi(ml + x+ λit),

when 0 < x < −λit− (m− 1)l, m−1
−λi

l < t < m
−λi

l,

(14)

in the case λi < 0, and

νmi+j(x, t) =


ψi(−(m− 1)l + x+ λit),

when 0 < x < ml − λit,
m−1
λi
l < t < m

λi
l,

ψi(−ml + x+ λit),

when ml − λit < x < l, m−1
λi
l < t < m

λi
l,

(15)

in the case λi > 0. Here in the formulas (11) - (13) : ψ = K−1ϕ.
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