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ON ONE SYSTEM OF FOURTH-ORDER NONLINEAR INTEGRO-DIFFERENTIAL
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Abstract. The uniqueness and stability of the solution of the initial-boundary value problem
for one system of fourth-order nonlinear parabolic integro-differential equations are investigated.
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In this paper, we consider the system of nonlinear parabolic integro-differential equa-
tions. The types of the system of nonlinear equations discussed in this article are partially
derived from the description of real diffusion processes (see, for instance, [5]-[7] and ref-
erences therein). The models of integro-differential type discussed in the presented work
were first proposed in [3]. In particular, the corresponding fourth-order integro-differential
equation is investigated [4].

In the rectangle Qr = [0,1] x [0,7T], where T is a positive constant, consider the
following initial-boundary problem:
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where f, g,ug and vy are the given functions of their arguments.

Let us show the solution to the problem (1)-(4) is stable with respect to the right-
hand sides of f(x,t) and g(x,t) and the initial conditions ug(z),vo(z). Multiply (1) by
the function u and integrate on [0, 1], using twice the formula of the integration by parts,
in the second term on the left, and taking into consideration to the boundary conditions

(3), we get
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For the right-hand side we using relation ab < %aQ + %bQ and the Poincare-Friedrichs
inequality [1], while for the left-hand side we neglect the positive member. After simple
transformation, we receive:
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After integrating with respect to variable ¢, taking into account the initial condition
[3] and neglecting the positive term, in the above inequality, we have
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By similar reasoning, we get an estimate for v(z,t):
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The last two estimations prove the stability of the solution of problem (1)-(4).

Now, show that if the initial-boundary value problem (1)-(4) has a solution, it is
unique. Suppose, u; and uy are two solution of the first equation, and v; and vy are two
solution of the second equation, for w = u; — us and z = vy — vy, we have:
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Multiply equation (5) by the function w and integrate the obtained equation by [0, 1].
Using the formula of integration by parts twice for the second term on the left-hand side
of the equation and taking into consideration the boundary conditions (7), we get
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Let us apply to above equation the relation (ca — db)(a — b) > (1/2)(c — d)(a® — b?),
assuming that
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If we neglect the non-negative member, we get
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By similar reasoning, we get
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Add the last two inequalities

2 2
ol + 5 ]

1 ! ¢ 82U1 2 82U2 2 821)1 2 (921]2 2
+?Azl(%0'_QW)*<&ﬂ>_(wJ .




74 T. Paikidze
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Using the following notation
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finally we arrive at
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After integrating with respect to ¢ and taking into account the initial conditions (7)
and (8) the third term in this inequality gives us a non-negative member, and if we ignore
it, we get ||w||*+ [|z]|* < 0. Thus, w = z = 0, which proves the uniqueness of the solution

of problem (1)-(4).
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