Reports of Enlarged Sessions of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 36, 2022

ON ONE SYSTEM OF FOURTH-ORDER NONLINEAR INTEGRO-DIFFERENTIAL PARABOLIC EQUATION

Tamar Paikidze

Abstract

The uniqueness and stability of the solution of the initial-boundary value problem for one system of fourth-order nonlinear parabolic integro-differential equations are investigated.

Keywords and phrases: Nonlinear integro-differential equation, fourth-order equation.
AMS subject classification (2010): 45K05, 35G31, 35K61, 74G30.
In this paper, we consider the system of nonlinear parabolic integro-differential equations. The types of the system of nonlinear equations discussed in this article are partially derived from the description of real diffusion processes (see, for instance, [5]-[7] and references therein). The models of integro-differential type discussed in the presented work were first proposed in [3]. In particular, the corresponding fourth-order integro-differential equation is investigated [4].

In the rectangle $Q_{T}=[0,1] \times[0, T]$, where T is a positive constant, consider the following initial-boundary problem:

$$
\begin{align*}
& \frac{\partial u}{\partial t}+\frac{\partial^{2}}{\partial x^{2}}\left\{\left[1+\int_{0}^{t}\left(\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v}{\partial x^{2}}\right)^{2}\right) d \tau\right] \frac{\partial^{2} u}{\partial x^{2}}\right\}=f(x, t) \tag{1}\\
& \frac{\partial v}{\partial t}+\frac{\partial^{2}}{\partial x^{2}}\left\{\left[1+\int_{0}^{t}\left(\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v}{\partial x^{2}}\right)^{2}\right) d \tau\right] \frac{\partial^{2} v}{\partial x^{2}}\right\}=f(g, t) \tag{2}\\
& u(0, t)=u(1, t)=0, \quad \frac{\partial^{2} u}{\partial x^{2}}(0, t)=\frac{\partial^{2} u}{\partial x^{2}}(1, t)=0, \quad u(x, 0)=u_{0}(x), \tag{3}\\
& v(0, t)=v(1, t)=0, \quad \frac{\partial^{2} v}{\partial x^{2}}(0, t)=\frac{\partial^{2} v}{\partial x^{2}}(1, t)=0, \quad v(x, 0)=v_{0}(x) \tag{4}
\end{align*}
$$

where f, g, u_{0} and v_{0} are the given functions of their arguments.
Let us show the solution to the problem (1)-(4) is stable with respect to the righthand sides of $f(x, t)$ and $g(x, t)$ and the initial conditions $u_{0}(x), v_{0}(x)$. Multiply (1) by the function u and integrate on $[0,1]$, using twice the formula of the integration by parts, in the second term on the left, and taking into consideration to the boundary conditions (3), we get

$$
\frac{d}{d t}\|u\|^{2}+\int_{0}^{1}\left\{\left[1+\int_{0}^{t}\left(\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v}{\partial x^{2}}\right)^{2}\right) d \tau\right] \frac{\partial^{2} u}{\partial x^{2}}\right\} \frac{\partial^{2} u}{\partial x^{2}} d x=\int_{0}^{1} f(x, t) u d x .
$$

For the right-hand side we using relation $a b \leq \frac{1}{2} a^{2}+\frac{1}{2} b^{2}$ and the Poincare-Friedrichs inequality [1], while for the left-hand side we neglect the positive member. After simple transformation, we receive:

$$
\frac{d}{d t}\|u\|^{2}+\int_{0}^{t}\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2} d x \leq \frac{1}{2} \int_{0}^{1} f^{2} d x+\int_{0}^{t}\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2} d x
$$

or

$$
\frac{d}{d t}\|u\|^{2}+\left\|\frac{\partial^{2} u}{\partial x^{2}}\right\|^{2} \leq\|f\|^{2}
$$

After integrating with respect to variable t, taking into account the initial condition [3] and neglecting the positive term, in the above inequality, we have

$$
\|u(t)\|^{2} \leq \int_{0}^{1}\|f(\tau)\|^{2} d \tau+\left\|u_{0}\right\|^{2}
$$

By similar reasoning, we get an estimate for $v(x, t)$:

$$
\|v(t)\|^{2} \leq \int_{0}^{1}\|g(\tau)\|^{2} d \tau+\left\|v_{0}\right\|^{2}
$$

The last two estimations prove the stability of the solution of problem (1)-(4).
Now, show that if the initial-boundary value problem (1)-(4) has a solution, it is unique. Suppose, u_{1} and u_{2} are two solution of the first equation, and v_{1} and v_{2} are two solution of the second equation, for $w=u_{1}-u_{2}$ and $z=v_{1}-v_{2}$, we have:

$$
\begin{gather*}
\frac{\partial w}{\partial t}+\frac{\partial^{2}}{\partial x^{2}}\left\{\left[1+\int_{0}^{t}\left(\left(\frac{\partial^{2} u_{1}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{1}}{\partial x^{2}}\right)^{2}\right) d \tau\right] \frac{\partial^{2} u_{1}}{\partial x^{2}}\right. \\
- \tag{5}\\
\left.\left[1+\int_{0}^{t}\left(\left(\frac{\partial^{2} u_{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{2}}{\partial x^{2}}\right)^{2}\right) d \tau\right] \frac{\partial^{2} u_{2}}{\partial x^{2}}\right\}=0, \\
\frac{\partial z}{\partial t}+\frac{\partial^{2}}{\partial x^{2}}\left\{\left[1+\int_{0}^{t}\left(\left(\frac{\partial^{2} u_{1}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{1}}{\partial x^{2}}\right)^{2}\right) d \tau\right] \frac{\partial^{2} v_{1}}{\partial x^{2}}\right. \tag{6}\\
- \tag{7}\\
\left.w\left(1+\int_{0}^{t}\left(\left(\frac{\partial^{2} u_{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{2}}{\partial x^{2}}\right)^{2}\right) d \tau\right] \frac{\partial^{2} v_{2}}{\partial x^{2}}\right\}=0, \tag{8}\\
w(0, t)=w(1, t)=0, \quad \frac{\partial^{2} w}{\partial x^{2}}(0, t)=\frac{\partial^{2} w}{\partial x^{2}}(1, t)=0, \quad w(x, 0)=0, \\
z(0, t)=z(1, t)=0, \quad \frac{\partial^{2} z}{\partial x^{2}}(0, t)=\frac{\partial^{2} z}{\partial x^{2}}(1, t)=0, \quad z(x, 0)=0
\end{gather*}
$$

Multiply equation (5) by the function w and integrate the obtained equation by $[0,1]$. Using the formula of integration by parts twice for the second term on the left-hand side of the equation and taking into consideration the boundary conditions (7), we get

$$
\begin{aligned}
& \frac{1}{2} \frac{d}{d t}\|w\|^{2}+\int_{0}^{1}\left(\frac{\partial^{2} u}{\partial x^{2}}\right)^{2}\left[\int_{0}^{t}\left(\left(\frac{\partial^{2} u_{1}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{1}}{\partial x^{2}}\right)^{2}\right) d \tau \frac{\partial^{2} u_{1}}{\partial x^{2}}\right. \\
& \left.-\int_{0}^{t}\left(\left(\frac{\partial^{2} u_{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{2}}{\partial x^{2}}\right)^{2}\right) d \tau \frac{\partial^{2} u_{2}}{\partial x^{2}}\right]\left[\frac{\partial^{2} u_{1}}{\partial x^{2}}-\frac{\partial^{2} u_{2}}{\partial x^{2}}\right]=0
\end{aligned}
$$

Let us apply to above equation the relation $(c a-d b)(a-b) \geq(1 / 2)(c-d)\left(a^{2}-b^{2}\right)$, assuming that

$$
\begin{gathered}
a=\frac{\partial^{2} u_{1}}{\partial x^{2}}, \quad b=\frac{\partial^{2} u_{2}}{\partial x^{2}} . \\
c=\int_{0}^{t}\left(\left(\frac{\partial^{2} u_{1}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{1}}{\partial x^{2}}\right)^{2}\right) d \tau, \quad d=\int_{0}^{t}\left(\left(\frac{\partial^{2} u_{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{2}}{\partial x^{2}}\right)^{2}\right) d \tau
\end{gathered}
$$

If we neglect the non-negative member, we get

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\|w\|^{2}+\frac{1}{2} \int_{0}^{1} \int_{0}^{t} \\
{\left[\left(\frac{\partial^{2} u_{1}}{\partial x^{2}}\right)^{2}-\left(\frac{\partial^{2} u_{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{1}}{\partial x^{2}}\right)^{2}-\left(\frac{\partial^{2} v_{2}}{\partial x^{2}}\right)^{2}\right] d \tau} \\
\times \\
\\
{\left[\left(\frac{\partial^{2} u_{1}}{\partial x^{2}}\right)^{2}-\left(\frac{\partial^{2} u_{2}}{\partial x^{2}}\right)^{2}\right] d x \leq 0}
\end{gathered}
$$

By similar reasoning, we get

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\|z\|^{2}+\frac{1}{2} \int_{0}^{1} \int_{0}^{t}\left[\left(\frac{\partial^{2} u_{1}}{\partial x^{2}}\right)^{2}-\left(\frac{\partial^{2} u_{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{1}}{\partial x^{2}}\right)^{2}-\left(\frac{\partial^{2} v_{2}}{\partial x^{2}}\right)^{2}\right] d \tau \\
\times\left[\left(\frac{\partial^{2} v_{1}}{\partial x^{2}}\right)^{2}-\left(\frac{\partial^{2} v_{2}}{\partial x^{2}}\right)^{2}\right] d x \leq 0
\end{gathered}
$$

Add the last two inequalities

$$
\begin{gathered}
\frac{1}{2} \frac{d}{d t}\|w\|^{2}+\frac{1}{2} \frac{d}{d t}\|z\|^{2} \\
+\frac{1}{2} \int_{0}^{1} \int_{0}^{t}\left[\left(\frac{\partial^{2} u_{1}}{\partial x^{2}}\right)^{2}-\left(\frac{\partial^{2} u_{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{1}}{\partial x^{2}}\right)^{2}-\left(\frac{\partial^{2} v_{2}}{\partial x^{2}}\right)^{2}\right] d \tau
\end{gathered}
$$

$$
\times\left[\left(\frac{\partial^{2} v_{1}}{\partial x^{2}}\right)^{2}-\left(\frac{\partial^{2} v_{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{1}}{\partial x^{2}}\right)^{2}-\left(\frac{\partial^{2} v_{2}}{\partial x^{2}}\right)^{2}\right] d x \leq 0 .
$$

Using the following notation

$$
\varphi(x, t)=\int_{0}^{1}\left[\left(\frac{\partial^{2} u_{1}}{\partial x^{2}}\right)^{2}-\left(\frac{\partial^{2} u_{2}}{\partial x^{2}}\right)^{2}+\left(\frac{\partial^{2} v_{1}}{\partial x^{2}}\right)^{2}-\left(\frac{\partial^{2} v_{2}}{\partial x^{2}}\right)^{2}\right] d \tau
$$

finally we arrive at

$$
\frac{1}{2} \frac{d}{d t}\|z\|^{2}+\frac{1}{2} \frac{d}{d t}\|w\|^{2}+\frac{1}{4} \frac{d}{d t} \int_{0}^{1} \varphi^{2} d x \leq 0 .
$$

After integrating with respect to t and taking into account the initial conditions (7) and (8) the third term in this inequality gives us a non-negative member, and if we ignore it, we get $\|w\|^{2}+\|z\|^{2} \leq 0$. Thus, $w=z \equiv 0$, which proves the uniqueness of the solution of problem (1)-(4).

REFERENCES

1. Friedman, A. Partial Differential Equations of Parabolic Type. Prentice-Hall, 1964.
2. Dzhangveladze, T.A. First boundary-value problem for a nonlinear equation of parabolic type (Russian). Dokl. Akad. Nauk SSSR, 269, 4 (1983), 839-842. English translation: Soviet Phys. Dokl., 28, 4 (1983), 323-324.
3. Gordeziani, D., Dzhangveladze, T., Korshia, T. Existence and uniqueness of the solution of a class of nonlinear parabolic problems (Russian). Differ. Uravn, 19, 7 (1983), 1197-1207. English translation: Differ. Equ., 19, 7 (1984), 887-895.
4. Jangyeladze, T. Investigation and numerical solution of nonlinear partial differential and integrodifferential models based on system of Maxwell equations. Semin. I.Vekua Inst. Appl. Math. Rep., 23 (1997), 51-87.
5. Jangyeladze, T., Kiguradze, Z., Neta, B. Numerical Solution of Three Classes of Nonlinear Parabolic Integro-Differential Equations. Mem. Differential Equations Math. Phys., 76 (2019), 1-118.
6. Jangyeladze, T., Kiguradze, Z., Neta, B. Numerical Solution of Three Classes of Nonlinear Parabolic Integro-Differential Equations, Elsevier, 2016, ACADEMIC PRESS, ISBN: 978-0-12-8046289. Elsevier/Academic Press, Amsterdam, 2015.
7. Chкнiкvadze, T. On one nonlinear integro-differential parabolic equation. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math., 35 (2021), 19-22.

Received 14.05.2022; revised 22.07.2022; accepted 24.08.2022.
Author(s) address(es):
Tamar Paikidze
I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University

University str. 2, 0186 Tbilisi, Georgia
E-mail: tamofaiqidze98@gmail.com

