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Abstract. The uniqueness and stability of the solution of the initial-boundary value problem
for one system of fourth-order nonlinear parabolic integro-differential equations are investigated.
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In this paper, we consider the system of nonlinear parabolic integro-differential equa-
tions. The types of the system of nonlinear equations discussed in this article are partially
derived from the description of real diffusion processes (see, for instance, [5]-[7] and ref-
erences therein). The models of integro-differential type discussed in the presented work
were first proposed in [3]. In particular, the corresponding fourth-order integro-differential
equation is investigated [4].

In the rectangle QT = [0, 1] × [0, T ], where T is a positive constant, consider the
following initial-boundary problem:
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where f, g, u0 and v0 are the given functions of their arguments.
Let us show the solution to the problem (1)-(4) is stable with respect to the right-

hand sides of f(x, t) and g(x, t) and the initial conditions u0(x), v0(x). Multiply (1) by
the function u and integrate on [0, 1], using twice the formula of the integration by parts,
in the second term on the left, and taking into consideration to the boundary conditions
(3), we get
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For the right-hand side we using relation ab ≤ 1
2
a2 + 1

2
b2 and the Poincare-Friedrichs

inequality [1], while for the left-hand side we neglect the positive member. After simple
transformation, we receive:
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After integrating with respect to variable t, taking into account the initial condition
[3] and neglecting the positive term, in the above inequality, we have
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By similar reasoning, we get an estimate for v(x, t):
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The last two estimations prove the stability of the solution of problem (1)-(4).
Now, show that if the initial-boundary value problem (1)-(4) has a solution, it is

unique. Suppose, u1 and u2 are two solution of the first equation, and v1 and v2 are two
solution of the second equation, for w = u1 − u2 and z = v1 − v2, we have:
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Multiply equation (5) by the function w and integrate the obtained equation by [0, 1].
Using the formula of integration by parts twice for the second term on the left-hand side
of the equation and taking into consideration the boundary conditions (7), we get
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Let us apply to above equation the relation (ca − db)(a − b) ≥ (1/2)(c − d)(a2 − b2),
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If we neglect the non-negative member, we get
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By similar reasoning, we get
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After integrating with respect to t and taking into account the initial conditions (7)
and (8) the third term in this inequality gives us a non-negative member, and if we ignore
it, we get ‖w‖2 + ‖z‖2 ≤ 0. Thus, w = z ≡ 0, which proves the uniqueness of the solution
of problem (1)-(4).
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