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ON ONE NONLINEAR DIFFUSION SYSTEM
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Abstract. The asymptotic behavior, as time variable tends to infinity, of a solution for a
nonlinear diffusion system is considered. It is shown that the stationary solution of the system
is linearly stable, and the possibility of the Hopf-type bifurcation is observed.
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Most scientific problems and phenomena such as diffusion, heat transfer, fluid me-
chanics, plasma physics, plasma waves, thermo-elasticity and chemical physics occur non-
linearly. The Diffusion Equation is a partial differential equation that describes the density
fluctuations in a diffusing material.

In this paper we study the behavior of a solution for a one-dimensional nonlinear
diffusion system. The existence of Hopf bifurcation to partial differential equation models
(see, for example, [5]) are derived, also. The linear stability and Hopf bifurcation of a
solution of the initial-boundary value problem investigated in this article models at first
appeared in [2]. Similar issues have been studied on various widespread models in the
works [3], [4], [6] (for extensive citation and annotation, see, for example [7]).

The system of equations discussed in this article is a generalized version of the system
given in [1].

For the given system of equations, in the domain Qt = (0, 1) × (0, t), consider the
following initial-boundary value problem:
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(1)

U(0, t) = V (0, t) = 0,

U(1, t) = ψ1 > 0, V (1, t) = ψ2 > 0,
(2)

U(x, 0) = U0(x), V (x, 0) = V0(x), S(x, 0) = S0(x) > 0, (3)

where α, β, γ are real numbers, a, b, c, ψ1, ψ2 are positive real numbers, and U0 (x), V0 (x),
S0 (x) are given functions.
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When β 6= γ, the unique stationary solution (Us, Vs, Ss) of problem (1)-(3) is:

Us = ψ1x, Vs = ψ2x, Ss =

[
b

a

(
ψ1

2 + ψ2
2
)

+
c

a
(ψ1 + ψ2)

] 1
β−γ

. (4)

Let us examine if the stationary solution (4) of the problem (1)-(3) is linearly stable.
Rewrite the solutions of problem (1)-(3) in the following form:

U (x, t) = Us + u (x, t) ,

V (x, t) = Vs + v (x, t) ,

S (x, t) = Ss + s (x, t) ,

(5)

where u (x, t), v (x, t), s(x, t) are small perturbations. The system (1) takes the following
form:
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where:
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[
b

a

(
ψ1

2 + ψ2
2
)

+
c

a
(ψ1 + ψ2)

]α−1
β−γ

,
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.

Introduce the following notations:

u (x, t) = ū (x) eωt, v (x, t) = v̄ (x) eωt, s (x, t) = s̄ (x) eωt, (6)

where ū (x) = u0e
ikx, v̄ (x) = v0e

ikx, s̄ (x) = s0e
ikx. After appropriate transformations,

we get: (
ω + βsk

2
)
u0 − αsiks0 = 0,(

ω + βsk
2
)
v0 − γsiks0 = 0,

ηsiku0 + µsikv0 + (vs − ω) s0 = 0,
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which has a nontrivial solution, if its main determinant ∆(ω, k) = 0. So,(
ω + βsk

2
) [(

ω + βsk
2
)
(vs − ω)− k2ηsαs − k2µsγs

]
= 0.

Consider the following equality:

k2 (βsvs − βsω − αsηs − γsµs)− ω2 + vsω = 0. (7)

Solving the equation (7) with respect to k gives k1 = −k2. Subsequently, we get

ū (x) =
ik1αs

ω + βsk2
1

(
S1e

ik1x − S2e
−ik1x

)
,

v̄ (x) =
ik1γs

ω + βsk2
1

(
S1e

ik1x − S2e
−ik1x

)
,

s̄ (x) = S1e
ik1x + S2e

−ik1x.

(8)

Taking into consideration the boundary conditions (2) and equalities (5), (6), we have

ū (0) = ū (1) = 0.

From this and (8), it follows that
S1 − S2 = 0,

S1e
ik1x − S2e

−ik1x = 0.

This system has a nonzero solution, when

∆(ω, k) =

∣∣∣∣ 1 −1
eik1 −e−ik1

∣∣∣∣ = 2isink1 = 0,

from where it follows that k1n = πn, nε Z.
Rewrite equality (7) in the following form:

ω2
n + Pn (βs, kn, vs)ωn + Ln (αs, βs, kn, vs, ηs, µs, γs) = 0,

where:
Pn (βs, kn, vs) = βsk

2
n − vs,

Ln (αs, βs, kn, vs, ηs, µs, γs) = −βsvsk
2
n + αsηsk

2
n + γsµsk

2
n.

If the condition Re(ωn) < 0 holds for each n, then the stacionary solution of the
problem (1)(3) is linearly stable. When 2α+ β − γ > 0, then Ln > 0, i.e. Pn > 0.

Therefore, the following statement is true.
Theorem. If 2α + β − γ > 0, β 6= γ, then stationary solution (4) of problem (1)-(3) to
be linearly stable, it is necessary and sufficient that the following inequality holds

a (γ − β)

[
b

a

(
ψ1

2 + ψ2
2
)

+
c

a
(ψ1 + ψ2)

]β−α−1
β−γ

< π2.
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Remark. From the last inequality, it is evident, that when γ < β, the solution of problem
(1)-(3) is always linearly stable.

Suppose, γ > β, β − α− 1 6= 0 and ψ1 = ψ2 = ψ. Then

ψc =
−c+

√
c2 + 2ab

(
π2

a(γ−β)

) β−γ
β−α−1

2b
.

For which the following relations are true:

P1 (ψc, α, β, γ) = 0, Pn (ψc, α, β, γ) > 0, n = 2, 3, . . . .

In addition, if we assume, that β − α − 1 < 0, then for ψ ∈ (0, ψc) , ψ = ψ1 = ψ2 we
have Pn (ψ, α, β, γ) > 0, n ∈ Z0.

Thus, if ψ ∈ (0, ψc), then the stacionary solution of problem (1)-(3) is always linearly
stable; while if ψ ∈ (ψc,+∞), then is nonstable. If ψ = ψc, then Re(ω1) = 0 and
Im(ω1) 6= 0 which means that the possibility of Hoph bifurcation occurs; That is the
small perturbations may cause transformation of a solution in periodic oscillations.
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