Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 36, 2022

ON ONE NONLINEAR DIFFUSION SYSTEM

Nino Mzhavanadze

Abstract. The asymptotic behavior, as time variable tends to infinity, of a solution for a nonlinear diffusion system is considered. It is shown that the stationary solution of the system is linearly stable, and the possibility of the Hopf-type bifurcation is observed.

Keywords and phrases: Nonlinear partial differential equations, stationary solution, linear stability, Hopf bifurcation.

AMS subject classification (2010): 35B32, 34K21, 35B35.

Most scientific problems and phenomena such as diffusion, heat transfer, fluid mechanics, plasma physics, plasma waves, thermo-elasticity and chemical physics occur nonlinearly. The Diffusion Equation is a partial differential equation that describes the density fluctuations in a diffusing material.

In this paper we study the behavior of a solution for a one-dimensional nonlinear diffusion system. The existence of Hopf bifurcation to partial differential equation models (see, for example, [5]) are derived, also. The linear stability and Hopf bifurcation of a solution of the initial-boundary value problem investigated in this article models at first appeared in [2]. Similar issues have been studied on various widespread models in the works [3], [4], [6] (for extensive citation and annotation, see, for example [7]).

The system of equations discussed in this article is a generalized version of the system given in [1].

For the given system of equations, in the domain $Q_t = (0,1) \times (0,t)$, consider the following initial-boundary value problem:

$$\frac{\partial U}{\partial t} = \frac{\partial}{\partial x} \left(S^{\alpha} \frac{\partial U}{\partial x} \right), \quad \frac{\partial V}{\partial t} = \frac{\partial}{\partial x} \left(S^{\alpha} \frac{\partial V}{\partial x} \right),$$

$$\frac{\partial S}{\partial t} = -aS^{\beta} + bS^{\gamma} \left[\left(\frac{\partial U}{\partial x} \right)^{2} + \left(\frac{\partial V}{\partial x} \right)^{2} \right] + cS^{\gamma} \left(\frac{\partial U}{\partial x} + \frac{\partial V}{\partial x} \right),$$

$$U(0, t) = V(0, t) = 0,$$

$$U(1, t) = \psi_{1} > 0, \quad V(1, t) = \psi_{2} > 0,$$

$$(1)$$

$$U(x,0) = U_0(x), \quad V(x,0) = V_0(x), \quad S(x,0) = S_0(x) > 0,$$
 (3)

where α, β, γ are real numbers, a, b, c, ψ_1, ψ_2 are positive real numbers, and $U_0(x), V_0(x)$, $S_0(x)$ are given functions.

When $\beta \neq \gamma$, the unique stationary solution (U_s, V_s, S_s) of problem (1)-(3) is:

$$U_{s} = \psi_{1}x, \quad V_{s} = \psi_{2}x, \quad S_{s} = \left[\frac{b}{a}\left(\psi_{1}^{2} + \psi_{2}^{2}\right) + \frac{c}{a}\left(\psi_{1} + \psi_{2}\right)\right]^{\frac{1}{\beta - \gamma}}.$$
 (4)

Let us examine if the stationary solution (4) of the problem (1)-(3) is linearly stable. Rewrite the solutions of problem (1)-(3) in the following form:

$$U(x,t) = U_{s} + u(x,t),$$

$$V(x,t) = V_{s} + v(x,t),$$

$$S(x,t) = S_{s} + s(x,t),$$
(5)

where u(x,t), v(x,t), s(x,t) are small perturbations. The system (1) takes the following form:

$$\frac{\partial u}{\partial t} = \alpha_s \frac{\partial s}{\partial x} + \beta_s \frac{\partial^2 u}{\partial x^2},$$
$$\frac{\partial v}{\partial t} = \gamma_s \frac{\partial s}{\partial x} + \beta_s \frac{\partial^2 v}{\partial x^2},$$
$$\frac{\partial s}{\partial t} = v_s s + \eta_s \frac{\partial u}{\partial x} + \mu_s \frac{\partial v}{\partial x},$$

where:

$$\begin{aligned} \alpha_s &= \psi_1 \alpha \left[\frac{b}{a} \left(\psi_1^2 + \psi_2^2 \right) + \frac{c}{a} \left(\psi_1 + \psi_2 \right) \right]^{\frac{\alpha - 1}{\beta - \gamma}}, \gamma_s &= \psi_2 \alpha \left[\frac{b}{a} \left(\psi_1^2 + \psi_2^2 \right) + \frac{c}{a} \left(\psi_1 + \psi_2 \right) \right]^{\frac{\alpha - 1}{\beta - \gamma}}, \\ \beta_s &= \left[\frac{b}{a} \left(\psi_1^2 + \psi_2^2 \right) + \frac{c}{a} \left(\psi_1 + \psi_2 \right) \right]^{\frac{\alpha}{\beta - \gamma}}, v_s &= (\gamma - \beta) \, a \left[\frac{b}{a} \left(\psi_1^2 + \psi_2^2 \right) + \frac{c}{a} \left(\psi_1 + \psi_2 \right) \right]^{\frac{\beta - 1}{\beta - \gamma}}, \\ \eta_s &= (2b\psi_1 + c) \left[\frac{b}{a} \left(\psi_1^2 + \psi_2^2 \right) + \frac{c}{a} \left(\psi_1 + \psi_2 \right) \right]^{\frac{\gamma}{\beta - \gamma}}, \\ \mu_s &= (2b\psi_2 + c) \left[\frac{b}{a} \left(\psi_1^2 + \psi_2^2 \right) + \frac{c}{a} \left(\psi_1 + \psi_2 \right) \right]^{\frac{\gamma}{\beta - \gamma}}. \end{aligned}$$

Introduce the following notations:

$$u(x,t) = \bar{u}(x)e^{\omega t}, \quad v(x,t) = \bar{v}(x)e^{\omega t}, \quad s(x,t) = \bar{s}(x)e^{\omega t},$$
 (6)

where $\bar{u}(x) = u_0 e^{ikx}$, $\bar{v}(x) = v_0 e^{ikx}$, $\bar{s}(x) = s_0 e^{ikx}$. After appropriate transformations, we get:

$$(\omega + \beta_s k^2) u_0 - \alpha_s i k s_0 = 0, (\omega + \beta_s k^2) v_0 - \gamma_s i k s_0 = 0, \eta_s i k u_0 + \mu_s i k v_0 + (v_s - \omega) s_0 = 0,$$

which has a nontrivial solution, if its main determinant $\Delta(\omega, k) = 0$. So,

$$\left(\omega + \beta_s k^2\right) \left[\left(\omega + \beta_s k^2\right) \left(v_s - \omega\right) - k^2 \eta_s \alpha_s - k^2 \mu_s \gamma_s \right] = 0.$$

Consider the following equality:

$$k^{2} \left(\beta_{s} v_{s} - \beta_{s} \omega - \alpha_{s} \eta_{s} - \gamma_{s} \mu_{s}\right) - \omega^{2} + v_{s} \omega = 0.$$

$$\tag{7}$$

Solving the equation (7) with respect to k gives $k_1 = -k_2$. Subsequently, we get

$$\bar{u}(x) = \frac{ik_1\alpha_s}{\omega + \beta_s k_1^2} \left(S_1 e^{ik_1x} - S_2 e^{-ik_1x} \right),$$

$$\bar{v}(x) = \frac{ik_1\gamma_s}{\omega + \beta_s k_1^2} \left(S_1 e^{ik_1x} - S_2 e^{-ik_1x} \right),$$

$$\bar{s}(x) = S_1 e^{ik_1x} + S_2 e^{-ik_1x}.$$

(8)

Taking into consideration the boundary conditions (2) and equalities (5), (6), we have

$$\bar{u}\left(0\right) = \bar{u}\left(1\right) = 0$$

From this and (8), it follows that

$$S_1 - S_2 = 0,$$

$$S_1 e^{ik_1 x} - S_2 e^{-ik_1 x} = 0.$$

This system has a nonzero solution, when

$$\Delta(\omega, k) = \begin{vmatrix} 1 & -1 \\ e^{ik_1} & -e^{-ik_1} \end{vmatrix} = 2isink_1 = 0,$$

from where it follows that $k_{1n} = \pi n$, $n \in \mathbb{Z}$.

Rewrite equality (7) in the following form:

$$\omega_n^2 + P_n\left(\beta_s, k_n, v_s\right)\omega_n + L_n\left(\alpha_s, \beta_s, k_n, v_s, \eta_s, \mu_s, \gamma_s\right) = 0,$$

where:

$$P_n \left(\beta_s, k_n, v_s\right) = \beta_s k_n^2 - v_s,$$
$$L_n \left(\alpha_s, \beta_s, k_n, v_s, \eta_s, \mu_s, \gamma_s\right) = -\beta_s v_s k_n^2 + \alpha_s \eta_s k_n^2 + \gamma_s \mu_s k_n^2$$

If the condition $Re(\omega_n) < 0$ holds for each n, then the stationary solution of the problem (1)(3) is linearly stable. When $2\alpha + \beta - \gamma > 0$, then $L_n > 0$, i.e. $P_n > 0$.

Therefore, the following statement is true.

Theorem. If $2\alpha + \beta - \gamma > 0, \beta \neq \gamma$, then stationary solution (4) of problem (1)-(3) to be linearly stable, it is necessary and sufficient that the following inequality holds

$$a(\gamma - \beta) \left[\frac{b}{a} (\psi_1^2 + \psi_2^2) + \frac{c}{a} (\psi_1 + \psi_2) \right]^{\frac{\beta - \alpha - 1}{\beta - \gamma}} < \pi^2.$$

Remark. From the last inequality, it is evident, that when $\gamma < \beta$, the solution of problem (1)-(3) is always linearly stable.

Suppose, $\gamma > \beta$, $\beta - \alpha - 1 \neq 0$ and $\psi_1 = \psi_2 = \psi$. Then

$$\psi_c = \frac{-c + \sqrt{c^2 + 2ab\left(\frac{\pi^2}{a(\gamma-\beta)}\right)^{\frac{\beta-\gamma}{\beta-\alpha-1}}}}{2b}.$$

For which the following relations are true:

$$P_1(\psi_c, \alpha, \beta, \gamma) = 0, \quad P_n(\psi_c, \alpha, \beta, \gamma) > 0, \quad n = 2, 3, \ldots$$

In addition, if we assume, that $\beta - \alpha - 1 < 0$, then for $\psi \in (0, \psi_c)$, $\psi = \psi_1 = \psi_2$ we have $P_n(\psi, \alpha, \beta, \gamma) > 0$, $n \in \mathbb{Z}_0$.

Thus, if $\psi \in (0, \psi_c)$, then the stacionary solution of problem (1)-(3) is always linearly stable; while if $\psi \in (\psi_c, +\infty)$, then is nonstable. If $\psi = \psi_c$, then $Re(\omega_1) = 0$ and $Im(\omega_1) \neq 0$ which means that the possibility of Hoph bifurcation occurs; That is the small perturbations may cause transformation of a solution in periodic oscillations.

REFERENCES

- Landau, L., Lifschitz, E. Electrodynamics of Continuous Media. Course of Theoretical Physics. Moscow, 1958.
- Dzhangveladze, T.A. Stability of the stationary solution of a system of nonlinear partial differential equations, Sovremennye problemy matematicheskoi fiziki (Russian). (Proceeding of AU-Union Sympozium. The Modern Problems of Mathematical Physics). Tbilisi, 1 (1987), 214-221.
- Kiguradze, Z.V. On the stationary solution for one diffusion model. Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math., 16 (2001), 7-20.
- Jangveladze, T., Gagoshidze, M. Hoph bifurcation and its computer simulation for one-dimensional Maxwell model. *Rep. Enlarged Sess. Semin. I. Vekua Inst. Appl. Math.*, **30** (2016), 27-30.
- Marsden, J.E., McCracken, M. The Hopf Bifurcation and its Applications. Springer Science & Business Media, 19 (2012).
- Jangveladze, T., Kratsashvili, M. Some properties of solution and finite difference scheme for one nonlinear partial differential model based on Maxwell system. *Mem. Differential Equations Math. Phys.*, **73** (2018), 83-92.
- Jangveladze, T. Investigation and numerical solution of nonlinear partial differential and integrodifferential models based on system of Maxwell equations. *Mem. Differential Equations Math. Phys.*, 76 (2019), 1-118.

Received 10.05.2022; revised 15.07.2022; accepted 21.09.2022.

Author(s) address(es):

Nino Mzhavanadze I. Vekua Institute of Applied Mathematics of I. Javakhishvili Tbilisi State University University str. 2, 0186 Tbilisi, Georgia E-mail: Ninomzhavanadze2@gmail.com