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ON THE GENERALIZED ABSOLUTE CONVERGENCE OF DOUBLE
FOURIER–HAAR SERIES
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Abstract. The sufficient conditions for the generalized absolute convergence of double Fourier–
Haar series are established in terms of mixed and partial moduli of δ-variation of the function
of two variables.
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1 Introduction The questions dealing with the absolute convergence of Fourier-
Haar series have been investigated in the works B. Golubov [4], Z. Chanturia [1] and many
other authors.

2 Content The problem of convergence of the series

∞∑
m=1

∞∑
n=1

γmn|f̂(m, n)|Γ, 0 < r < 2,

is considered, where {γmn}m≥1, n≥1 is a definite multiple sequence of nonnegative numbers
and

f̂(m, n) =

∫∫
I2

f(x, y)λm(x)λn(y) dx dy

are the Fourier–Haar coefficients of the function f(x, y) ∈ L(I2), where I2 = [0, 1]× [0, 1]
and λm(x)λn(y)}m≥1, n≥1 is the multiple Haar system [4].

Following the definition in [3] and notations of [8] a sequence {γkj}k≥1, j≥1, k, j ∈ N of
nonnegative numbers is said to belong to the class Aα, for some α > 1, if( ∑

k∈Dm

∑
j∈Dn

γα
kj

) 1
α ≤ c · 2

(m+n)(1−α)
α
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k∈Dm−1

∑
j∈Dn−1

γkj,

( ∑
k∈Dm

γα
k1

) 1
α ≤ c1 · 2

m(1−α)
α

∑
k∈Dm−1

γk1,

( ∑
j∈Dn

γα
1j

) 1
α ≤ c2 · 2

n(1−α)
α

∑
j∈Dn−1

γ1j,
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where D0 = D1 = {1}, Di = {2i−1 + 1, 2i−1 + 2, . . . , 2i}, i ∈ N, and the constants c, c1, c2

depend only on α.
B(I2) denotes class of bounded functions on the I2.
BVs(I

2), s ≥ 1 is the class of the functions with bounded s variation on the I2 [4].
υ(m, n; f)-denotes the mixed modulus of variation of the function f ∈ B(I2).
υ1(m; f), υ2(n; f) are partial moduli of variation of f ∈ B(I2).
The definitions of mixed and partial moduli of variation for the function of two vari-

ables was introduced by Kraszkowski [6] according to Chanturia’s [2] modulus of variation.
ϕ(m, n; δ1, δ2; f)-denotes mixed modulus of δ(δ1, δ2) variation of the function f ∈ B(I2),
ϕ1(m; δ1; f) and ϕ2(n; δ2; f) are partial moduli of δ-variation. The mixed and partial
moduli of δ-variation of the function f(x, y) ∈ B(I2) are defined, according to Karchava’s
[5] modulus of δ-variation, in the following way:

ϕ(m, n; δ1, δ2; f) = sup
Πm,n;δ1,δ2

m∑
n=1

n∑
j=1

ω(f ; Ik ×Bj),

ϕ1(m; δ1; f) = sup
0≤y≤1

sup
Πm;δ1

m∑
k=1

ω1(f ; Ik),

ϕ2(n; δ2; f) = sup
0≤x≤1

sup
Πn;δ2

n∑
j=1

ω2(f ; Bj),

where m, n ∈ N, δ1, δ2 > 0,

ω(f ; Ik ×Bj) = sup
{∣∣f(x + h1, y + h2)− f(x, y + h2)− f(x + h1, y) + f(x, y)

∣∣ :

(x, y), (x + h1, y + h2) ∈ Ik ×Bj, h1, h2 > 0
}

,

ω1(f ; Ik) = sup
{
|f(x + h1, y)− f(x, y)| : x, x + h1 ∈ Ik, h1 > 0

}
,

ω2(f ; Bj) = sup
{
|f(x, y + h2)− f(x, y)| : y, y + h2 ∈ Bj, h2 > 0

}
,

Πm,n;δ1,δ2 is an arbitrary system of mn pairwise nonintersecting rectangles Ik×Bj ⊂ I2,
1 ≤ k ≤ m, 1 ≤ j ≤ n, k, j ∈ N.

Πm;δ1 (Πn;δ2) is an arbitrary system of nonintersecting intervals {Ik}1≤k≤m ({Bj}1≤j≤n)
of the segment [0, 1]. The length of each interval Ik (Bj) is equal to δ1 (δ2).

The following statement is true.
Theorem. Let {γkj} ∈ A p

p−rp+r
for some numbers p > 1 and 0 < r < 2, f(x, y) ∈ B(I2)

and in addition

∞∑
m=1

∞∑
n=1

γmn(mn)−
3
2

r

( 2m∑
k=m+1

2n∑
j=n+1

ϕ(k, j; 1
2m

, 1
2n

; f)

kj

)r

< +∞,

∞∑
m=1

γm1m
− 3

2
r

( 2m∑
k=m+1

ϕ1(k; 1
2m

; f)

k

)r

< +∞,
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∞∑
n=1

γ1nn
− 3

2
r

( 2n∑
j=n+1

ϕ2(j;
1
2n

; f)

j

)r

< +∞,

then the series
∞∑

m=1

∞∑
n=1

γmn|f̂(m, n)|r

converges.
The Theorem presents the analogue of the theorem, obtained by Meskhia [7] for double

Fourier–Haar series.
From the Theorem when γmn = 1, m, n ∈ N follows:

Corollary 1. Let f(x, y) ∈ B(I2) and

∞∑
m=1

∞∑
n=1

(mn)−
3
2

rυr(m, n; f) < +∞,

∞∑
m=1

m− 3
2

rυr
1(m; f) < +∞,

∞∑
n=1

n−
3
2

rυr
2(n; f) < +∞,

then
∞∑

m=1

∞∑
n=1

|f̂(m, n)|r < +∞.

Corollary 1 is the analogue of Chanturia’s [1] theorem for double Fourier–Haar series.
For γmn = (mn)γ, m,n ∈ N the Theorem leads to Golubov’s [4] theorem, which can

be formulated as follows:

Corollary 2. Let f(x, y) ∈ BVs(I
2), s ≥ 1, then

∞∑
m=1

∞∑
n=1

(mn)γ|f̂(m,n)|r < +∞,

when

γ + 1 < r
(1

s
+

1

2

)
, γ ∈ R, 0 < r < 2.
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