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ON THE GENERALIZED ABSOLUTE CONVERGENCE OF DOUBLE
FOURIER-HAAR SERIES
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Abstract. The sufficient conditions for the generalized absolute convergence of double Fourier—
Haar series are established in terms of mixed and partial moduli of §-variation of the function
of two variables.
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1 Introduction The questions dealing with the absolute convergence of Fourier-
Haar series have been investigated in the works B. Golubov [4], Z. Chanturia [1] and many
other authors.

2 Content The problem of convergence of the series
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is considered, where {7V, }m>1, n>1 is a definite multiple sequence of nonnegative numbers
and
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are the Fourier-Haar coefficients of the function f(z,y) € L(I?), where I* = [0,1] x [0, 1]
and A, (2)An(Y) bm>1, n>1 is the multiple Haar system [4].

Following the definition in [3] and notations of [8] a sequence {7y, }k>1, j>1, k,7 € N of
nonnegative numbers is said to belong to the class A,, for some a > 1, if
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where Do = Dy = {1}, D; = {21+ 1,21 +2,...,2}, i € N, and the constants c, ci, ¢,
depend only on «.

B(I?) denotes class of bounded functions on the I2.

BV,(I?), s > 1 is the class of the functions with bounded s variation on the I? [4].

v(m, n; f)-denotes the mixed modulus of variation of the function f € B(I?).

vi(m; f), va(n; f) are partial moduli of variation of f € B(I?).

The definitions of mixed and partial moduli of variation for the function of two vari-
ables was introduced by Kraszkowski [6] according to Chanturia’s [2] modulus of variation.
©(m, n; 8y, 8s; f)-denotes mixed modulus of §(dy, d2) variation of the function f € B(I?),
w1(m; 15 f) and @o(n;de; f) are partial moduli of d-variation. The mixed and partial
moduli of d-variation of the function f(z,y) € B(I?) are defined, according to Karchava’s
[5] modulus of d-variation, in the following way:

@(m,n; 61,005 f) = sup ZZ (f; I x By),
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where m,n € N, 1,65 > 0,
w(fi B x By) = sup {[ F(x + oy + ho) = fla,y+ ha) = f(z + hu,y) + Flay)]
(2.9), (@ + b,y + ha) € Iy X By, by, ha > 0},
wr(Fi 1) = sup {|f (@ + h1.y) = f(e,9)| w4 hi € L by >0,
ws(f5 By) = sup {|(z,y + ha) = f(w.9)| : 9.y +ha € By, ha > 0],

I,n.n.5,.5, 18 an arbitrary system of mn pairwise nonintersecting rectangles I, x B; C I?,
1<k<m,1<j<n, k,jeN.

IL,,..5, (IL,,.5,) is an arbitrary system of nonintersecting intervals {1y }1<x<m ({Bj}1<j<n)
of the segment [0, 1]. The length of each interval I, (B;) is equal to d; (d2).

The following statement is true.
Theorem. Let {y;} € A

and in addition
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then the series
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converges.
The Theorem presents the analogue of the theorem, obtained by Meskhia [7] for double
Fourier-Haar series.
From the Theorem when 7,,, = 1, m,n € N follows:

Corollary 1. Let f(x,y) € B(I?) and

then

m=1 n=1

Corollary 1 is the analogue of Chanturia’s [1] theorem for double Fourier-Haar series.
For Y = (mn)?, m,n € N the Theorem leads to Golubov’s [4] theorem, which can
be formulated as follows:

Corollary 2. Let f(x,y) € BV,(I?), s > 1, then
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