Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 36, 2022

LOCAL LIMIT THEOREM FOR SUMS OF DEPENDENT RANDOM VECTORS

Zurab Kvatadze, Beqnu Pharjiani, Tsiala Kvatadze

Abstract. On the probability space (Ω, F, P) a stationary in the narrow sense sequence $\{\xi_n, Y_n\}_{n\geq 1}$ is considered. $\{\xi_n\}_{n\geq 1}$ is a finite regular Markov chain. $\{Y_n\}_{n\geq 1}$ is a sequence of random vectors with chain dependence. Local limit theorems are obtained for the conditional and unconditional distributions of the sums $S_{n_1} = \frac{1}{\sqrt{n}} \sum_{j=1}^n [Y_j - E(Y_j|\xi_j)]$ and $S_n = \frac{1}{\sqrt{n}} \sum_{j=1}^n [Y_j - E(Y_1)]$ respectively.

Keywords and phrases: Density, Markov's chain, sequence with chain dependence, local limit theorem.

AMS subject classification (2010): 60F05, 60J20.

1 Introduction. On a probability space (Ω, F, P) lets consider a two-component, stationary in a narrow sense, sequence

$$\{\xi_i, Y_i\}_{i \ge 1}$$
 (1)

 $\{\xi_i\}_{i\geq 1} \ (\xi_i : \Omega \longrightarrow \{1, 2, ..., s\})$, is a homogeneous, ergodic finite Markov chain. $P = \{p_{\alpha\beta}\}_{\alpha,\beta=\overline{1,s}}$ is its transition probability matrix and $\pi = (\pi_1, \pi_2, ..., \pi_s)$ is the initial distribution. $\{Y_i\}_{i\geq 1} \ (Y_i : \Omega \longrightarrow R^k)$ is a sequence with chain dependence [1]. Lets the chain consist of one ergodic class (that may have cyclic subclasses).

Let's by the symbol \xrightarrow{W} is designated a weak convergence. Let's introduce the notation:

$$\mu(\xi_j) = E(Y_j|\xi_j), \ R(\xi_j) = E\{[Y_j - \mu(\xi_j)][Y_j - \mu(\xi_j)]^T|\xi_j\}, \ 1 \le j \le n;$$

$$\mu(\alpha) = E(Y_1|\xi_1 = \alpha), \ R(\alpha) = E\{[Y_1 - \mu(\alpha)][Y_1 - \mu(\alpha)]^T|\xi_1 = \alpha\}, \ 1 \le \alpha \le s;$$

$$\mu = E\mu(\xi_1) = \sum_{\alpha=1}^s \pi_\alpha \mu(\alpha), \ R_0 = ER(\xi_1) = \sum_{\alpha=1}^s \pi_\alpha R(\alpha).$$

Let's consider sums

$$S_n = \frac{1}{\sqrt{n}} \sum_{j=1}^n [Y_j - \mu] = S_{n_1} + S_{n_2}, \ S_{n_1} = \frac{1}{\sqrt{n}} \sum_{j=1}^n [Y_j - \mu(\xi_j)], \ S_{n_2} = \frac{1}{\sqrt{n}} \sum_{j=1}^n [\mu(\xi_j) - \mu]$$
(2)

Lemma 1. (see [1]) Let's $sp(R_0) < \infty$ and for each function $\Psi : \Xi \to R^1$ for which $E\Psi(\xi_i) < \infty$, when $n \to \infty$ almost everywhere there is a convergence $\frac{1}{n} \sum_{j=1}^n \Psi(\xi_j) \to E\Psi(\xi_1)$ then the following limit equalities are true

$$\mathbf{P}_{S_{n_1}} \xrightarrow{W} \Phi_{R_0}, \mathbf{P}_{S_{n_2}} \xrightarrow{W} \Phi_{T_{\mu}}, \mathbf{P}_{S_n} \xrightarrow{W} \Phi_{R_0+T_{\mu}}.$$
(3)

Here
$$T_{\mu} = F[\Pi_{dg}Z + (\Pi_{dg}Z)^T - \Pi_{dg}\Pi - \Pi_{dg}]_c F^T$$
. Z is a fundamental matrix

 $F = \|\mu_{i\alpha}\|_{i=1,k,\alpha=1,s}, \mu_{i\alpha} = \mu_i(b_\alpha), \Pi = \|\pi_{\alpha\beta}\|_{\alpha,\beta=1,s}, \pi_{\alpha,\beta} = \pi_\beta, \ \alpha,\beta = \overline{1,s}.$

Let's $\nu_n(\alpha) = \nu_n(r_\alpha), (\alpha = \overline{1,s})$ is a random variable that shows the number of time moments for the first n steps in that the chain is in the state b_α , when the trajectory $\bar{\xi_{1n}} = (\xi_1, \xi_2, ..., \xi_n)$ is fixed.

Lemma 2. (see [2]). For a regular chain, when $\varepsilon > 0$ are true the equalities

$$\lim_{n \to \infty} E[\frac{\nu_n(\alpha)}{n}] = \pi_\alpha, E[\frac{\nu_n(\alpha)}{n} - \pi_\alpha]^2 \le \frac{c(\pi, P)}{n}, \lim_{n \to \infty} P\{|\frac{\nu_n(\alpha)}{n} - \pi_\alpha| > \varepsilon = 0\}, \ \alpha = \overline{1, s}$$
(4)

Let's introduce conditional distributions $P_{\alpha} \equiv P_{Y_1|\xi_1=\alpha}, \ \alpha = \overline{1,s}$ of the quantity ξ_1

2 Local limit theorem. Theorem: When $sp(R_0) < \infty$ and some distribution P_{α} , $(\alpha = \overline{1, s})$ has a characteristic function that is integrable to some positive integer power ℓ , then the following propositions are true:

a) For almost every ω ($\omega \varepsilon \Omega$) there is a natural number $N(\omega)$ such that when $n > N(\omega)$ is the conditional distribution $P_{S_{n_1}|\bar{\xi}_{1n}}$ has density $P_{S_{n_1}|\bar{\xi}_{1n}}(x)$ and

$$\sup_{x \in R^k} |p_{S_{n_1}|\bar{\xi}_{1n}}(x) - \varphi_{R_0}(x)| \to 0 \quad almost \ everywhere.$$

b) Starting from the defined n_0 for the distribution of sum S_n a representation $P_{S_n} = P_{S_n}^{(1)} + P_{S_n}^{(2)}$ is valid (generally different from the expansion on absolutely continuous $P_{S_n}^{(\alpha c)}$ and singular $P_{S_n}^{(s)}$ parts with respect to the Lebesgue measure) such that, $P_{S_n}^{(s)}(R^k) \leq P_{S_n}^{(2)}(R^k) \leq C(\pi, P) \cdot n^{-1}$, where $C(\pi, P)$ is a constant depending on the parameters of the chain.

c) When $det(T_{\mu}) > 0$ and $p_{S_n}^{(1)}$ is $P_{S_n}^{(1)}$ are the derivative of the Radon Nikodim measure: $P_{S_n}^{(1)}(x)$ with respect to the Lebesgue measure, is fulfilled the limit equality holds

$$\lim_{n \to \infty} \sup_{x \in R^k} |p_{S_n}^{(1)}(x) - \varphi_{R_0 + T_\mu}(x)| = 0$$

Proof. The validity of point a) follows from formulas (3) (according to[3]). Let's the conditions of the theorem be satisfied for the state $\alpha = 1$ of the chain. For number $\varepsilon > 0, (\varepsilon < min(\pi_1, 1 - \pi_1))$ let's introduce the events

$$B_n = \{ |\frac{\nu_n(1)}{n} - \pi_1| < \varepsilon \} = \{ n(\pi_1 - \varepsilon) < \nu_n(1) < n(\pi_1 + \varepsilon) \}, \quad n = 1, 2, \dots$$

Let's expand the distribution of the sum S_n as $P_{S_n}(\cdot) = EP_{S_n|\bar{\xi}_{1n}}(\cdot) = P_{S_n}^{(1)}(\cdot) + P_{S_n}^{(2)}(\cdot)$, where $P_{S_n}^{(1)}(\cdot) = EP_{S_n|\bar{\xi}_{1n}}I_{(B_n)}$, $P_{S_n}^{(2)}(\cdot) = EP_{S_n|\bar{\xi}_{1n}}I_{(\overline{B}_n)}$. Naturally $P_{S_n}^{(1)}(\cdot)$ starting from the number $n_0 = [(\pi_1 - \varepsilon)^{-1}] + 1$ is an absolutely continuous measure with respect to the Lebesgue measure. Let its Radon-Nikodim derivative be $p_{S_n}^{(1)}(x) = Ep_{S_n|\bar{\xi}_{1n}}I_{(B_n)}$. The absolutely continuous measure would also be formed on those trajectories for that B_n does not fulfilled, therefore, according to (4)

$$P_{S_n}^{(\alpha c)}(R^k) \ge P_{S_n}^{(1)}(R^k), \ P_{S_n}^{(s)}(R^k) \le P_{S_n}^{(2)}(R^k) = P(\bar{B_n}) \le \frac{1}{\varepsilon^2} E |\frac{\nu_n(\alpha)}{n} - \pi_\alpha|^2 \le \frac{c(\pi, P, \varepsilon)}{n}$$

We fix the trajectory $\overline{\xi}_{1n}$ and group separately those summands from (2), corresponding to the terms ξ_i , $i = \overline{1, n}$ of control sequence have obtained values $b_1, b_2, ..., b_s$ respectively. Their number is $\nu_n(\alpha)$, $\alpha = \overline{1, s}$, respectively. Let's renumber the members of each group:

$$\tau_0(\alpha) = 0, \ \tau_m(\alpha) = \min\{j | \tau_{m-1}(\alpha) < j \le n; \ \xi_j = b_\alpha\}, \ m = \overline{1, \nu_n(\alpha)}, \ \alpha = \overline{1, s_1}$$

Naturally that $\xi_{\tau_m(\alpha)} = b_{\alpha}$, $m = \overline{1, \nu_n(\alpha)}$, $\alpha = \overline{1, s}$. Representations are valid

$$S_{n_1} = \frac{1}{\sqrt{n}} \sum_{\alpha=1}^{s} S_{n_1}(\alpha), \quad S_{n_1} = \sum_{m=1}^{\nu_n(\alpha)} [Y_{\tau_m(\alpha)} - \mu(\alpha)].$$

For each fixed state α , vectors $\xi_{\tau_m(\alpha)}, m = \overline{1, \nu_n(\alpha)}$ are equally distributed vectors with chain dependence. $EY_{\tau_m(\alpha)} = \mu(\alpha)$ and $cov(Y_{\tau_m(\alpha)}) = R(\alpha)$. Therefore at $n \to \infty$

$$\sup_{A \in C^k} |P_{\frac{S_{n_1(\alpha)}}{\sqrt{\nu_n(\alpha)}}|\bar{\xi}_{1n}}(A) - \Phi_{R(\alpha)}(A)| \to 0, \quad almost \ everywhere \quad \alpha = \overline{1,s}$$

Thereby

$$\sup_{x \in \mathbb{R}^k} |p_{\frac{Sn_1(1)}{\sqrt{\nu_n(1)}}|\bar{\xi}_{1n}}(x) - \varphi_{R(1)}(x)| I_{(B_n)} \to 0, \ almost \ everywhere$$

For the number $n \ (n \ge n_0)$ let's designate $\tau_n = \sup_{x \in \mathbb{R}^k} |p_{S_{n_1}|\overline{\xi}_{1n}}(x) - \varphi_{R_0}(x)|I_{(B_n)}$. Let us show that $\tau_n \to 0$ almost everywhere. To this end, we decompose the sums S_{n_1} and R_0 into two parts:

$$S_{n_1} = \frac{1}{\sqrt{n}} S_{n_1}(1) + \frac{1}{\sqrt{n}} \sum_{\alpha=2}^{s} S_{n_1}(\alpha)$$
$$= \frac{1}{\sqrt{n}} S_{n_1}(1) + \frac{1}{\sqrt{n}} \overline{S}_{n_1}, R_0 = \pi_1 R(1) + \sum_{\alpha=2}^{s} \pi_\alpha R(\alpha) = \pi_1 R(1) + \bar{R}_0$$

It is easy to determine that the conditional density of the sum $\frac{1}{\sqrt{n}}S_{n_1}(1)$ tends to the density $\varphi_{\pi_1R(1)}$ and the asymptotic distribution of the sum $\frac{1}{\sqrt{n}}S_{n_1}$ is Φ_{R_0} .

Starting from the number $n \ge n_0$ the value τ_n is bounded, so that $\lim_{n\to\infty} E\tau_n = 0$. To prove point c) we apply the decomposition :

$$\sup_{x \in R^k} |p_{S_n}^{(1)}(x) - \varphi_{R_0 + T_\mu}(x)| \le \sup_{x \in R^k} |Ep_{S_n|\bar{\xi}_{1n}}(x)I_{(B_n)} - \varphi_{R_0 + T_\mu}(x) \le |Ep_{S_n}|\bar{\xi}_{1n}(x)I_{(B_n)} - \varphi_{R_0 + T_\mu}(x)| \le |Ep_{S_n}|\bar{\xi}_{1n}(x)I_{(B_n)} - \varphi_{R_n}(x)| \ge |Ep_{S_n}|\bar{\xi}_{1n}(x)I_{(B_n)} - \varphi_{R_n}(x)| \ge |Ep_{S_n}|\bar{\xi}_{1n}(x)I_{(B_n)} - \varphi_{R_n}(x)| \ge |Ep_{S_n}|\bar{\xi}_{1n}(x)I_{(B_n)} - \varphi_{R_n}(x)| \ge |Ep_{S_$$

$$\leq \sup_{x \in R^{k}} |Ep_{S_{n}|\bar{\xi}_{1n}}(x)I_{(B_{n})} - E\varphi_{R_{0}}(x - S_{n_{2}})I_{(B_{n})}| + \sup_{x \in R^{k}} |E\varphi_{R_{0}}(x - S_{n_{2}}) - \varphi_{R_{0}+T_{\mu}}(x) + \sup_{x \in R^{k}} |E\varphi_{R_{0}}(x - S_{n_{2}})I_{(\bar{B}_{n})}| \equiv I_{1} + I_{2} + I_{3}$$

The following estimate is valid

$$I_{1} = \sup_{x \in R^{k}} |Ep_{S_{n_{1}}|\bar{\xi}_{1n}}(x - S_{n_{2}})I_{(B_{n})} - E\varphi_{R_{0}}(x - S_{n_{2}})I_{(B_{n})}|$$
$$= E \sup_{x \in R^{k}} |p_{S_{n_{1}}|\bar{\xi}_{1n}} - \varphi_{R_{0}}(x)|I_{(B_{n})} = E\tau_{n} \xrightarrow{n \to \infty} 0.$$

The summand I_2 would be represented as the following

$$I_{2} = \sup_{x \in R^{k}} |E\varphi_{R_{0}}(x - S_{n_{2}}) - \varphi_{R_{0} + T_{\mu}}(x)| = \sup_{x \in R^{k}} |\int \varphi_{R_{0}}(x - y)(P_{S_{n_{2}}} - P_{T_{\mu}})(dy)|$$

According to equalities (3), it's limit is equal to zero. It's obvious that $I_3 \xrightarrow{n \to \infty} 0$

REFERENCES

- BOKUCHAVA, I.V., SHERVASHIDZE, T. L., KVATADZE, Z.A. On limit theorems for random vectors controlled by a Markov chain. *Probability theory and mathematical statistics*, vol. I Vilnius, 1985, VNU Sci. Press, Utrecht (1987), 231-250.
- 2. KEMENY, J.G., SNELL, J.L. Finite Markov chains. The university series in undergraduate mathematics. USA: Springer-Verlag;, (1963), 272.
- KHEKENDORF, KH. Multidimensional local limit theorem for densities. Ukrainian mathematical Journal, XVI, 3 (1964), 365-373.

Received 20.05.2022; revised 29.07.2022; accepted 28.09.2020.

Author(s) address(es):

Zurab Kvatadze Georgian Technical University Kostava str. 77, 0171 Tbilisi, Georgia E-mail: zurakvatadze@yahoo.com

Beqnu Parjiani Georgian Technical University Kostava str. 77, 0171 Tbilisi, Georgia E-mail: beqnufarjiani@yahoo.com

Tsiala Kvatadze International Black sea University 2, David Agmashenebeli Alley 13 km, 0131 Tbilisi, Georgia E-mail: ttkvatadze@gmail.com