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LOCAL LIMIT THEOREM FOR SUMS OF DEPENDENT RANDOM VECTORS

Zurab Kvatadze, Beqnu Pharjiani, Tsiala Kvatadze

Abstract. On the probability space (Ω, F, P ) a stationary in the narrow sense sequence
{ξn, Yn}n≥1 is considered. {ξn}n≥1 is a finite regular Markov chain.{Yn}n≥1is a sequence of
random vectors with chain dependence. Local limit theorems are obtained for the condi-
tional and unconditional distributions of the sums Sn1 = 1√

n

∑n
j=1[Yj − E(Yj |ξj)] and Sn =

1√
n

∑n
j=1[Yj − E(Y1)] respectively.
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1 Introduction. On a probability space (Ω, F, P ) lets consider a two-component,
stationary in a narrow sense, sequence

{ξi, Yi}i≥1 (1)

{ξi}i≥1 (ξi : Ω −→ {1, 2, ..., s}), is a homogeneous, ergodic finite Markov chain.
P = {pαβ}α,β=1,s is its transition probability matrix and π = (π1, π2, ..., πs) is the initial
distribution. {Yi}i≥1 (Yi : Ω −→ Rk) is a sequence with chain dependence [1]. Lets the
chain consist of one ergodic class (that may have cyclic subclasses).

Let’s by the symbol
W−→ is designated a weak convergence. Let’s introduce the

notation:

µ(ξj) = E(Yj|ξj), R(ξj) = E{[Yj − µ(ξj)][Yj − µ(ξj)]
T |ξj}, 1 ≤ j ≤ n;

µ(α) = E(Y1|ξ1 = α), R(α) = E{[Y1 − µ(α)][Y1 − µ(α)]T |ξ1 = α}, 1 ≤ α ≤ s;

µ = Eµ(ξ1) =
s∑

α=1

παµ(α), R0 = ER(ξ1) =
s∑

α=1

παR(α).

Let’s consider sums

Sn =
1√
n

n∑
j=1

[Yj−µ] = Sn1 +Sn2 , Sn1 =
1√
n

n∑
j=1

[Yj−µ(ξj)], Sn2 =
1√
n

n∑
j=1

[µ(ξj)−µ] (2)

Lemma 1. (see [1]) Let’s sp(R0) < ∞ and for each function Ψ : Ξ → R1 for which
EΨ(ξi) < ∞, when n → ∞ almost everywhere there is a convergence 1

n

∑n
j=1 Ψ(ξj) →

EΨ(ξ1) then the following limit equalities are true

PSn1

W−→ ΦR0 , PSn2

W−→ ΦTµ , PSn

W−→ ΦR0+Tµ . (3)
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Here Tµ = F [ΠdgZ + (ΠdgZ)T − ΠdgΠ− Πdg]cF
T . Z is a fundamental matrix.

F = ‖µiα‖i=1,k,α=1,s, µiα = µi(bα), Π = ‖παβ‖α,β=1̄,s, πα,β = πβ, α, β = 1, s.

Let’s νn(α) = νn(rα), (α = 1, s) is a random variable that shows the number of time
moments for the first n steps in that the chain is in the state bα, when the trajectory
¯ξ1n = (ξ1, ξ2, ..., ξn) is fixed.

Lemma 2. (see [2]). For a regular chain, when ε > 0 are true the equalities

lim
n→∞

E[
νn(α)

n
] = πα, E|νn(α)

n
−πα|2 ≤

c(π, P )

n
, lim
n→∞

P{|νn(α)

n
− πα| > ε = 0}, α = 1, s (4)

Let’s introduce conditional distributions Pα ≡ PY1|ξ1=α, α = 1, s of the quantity ξ1

2 Local limit theorem. Theorem: When sp(R0) < ∞ and some distribution Pα,
(α = 1, s) has a characteristic function that is integrable to some positive integer power
`, then the following propositions are true:

a) For almost every ω (ωεΩ) there is a natural number N(ω) such that when n > N(ω)
is the conditional distribution PSn1 |ξ̄1n

has density PSn1 |ξ̄1n
(x) and

sup
xεRk

|pSn1 |ξ̄1n
(x)− ϕR0(x)| → 0 almost everywhere.

b) Starting from the defined n0 for the distribution of sum Sn a representation

PSn = P
(1)
Sn

+P
(2)
Sn

is valid (generally different from the expansion on absolutely continuous

P
(αc)
Sn

and singular P
(s)
Sn

parts with respect to the Lebesgue measure) such that, P
(s)
Sn

(Rk) ≤
P

(2)
Sn

(Rk) ≤ C(π, P ) · n−1, where C(π, P ) is a constant depending on the parameters of
the chain.

c) When det(Tµ) > 0 and p
(1)
Sn

is P
(1)
Sn

are the derivative of the Radon Nikodim

measure: P
(1)
Sn

(x) with respect to the Lebesgue measure, is fulfilled the limit equality
holds

lim
n→∞

sup
xεRk

|p(1)
Sn

(x)− ϕR0+Tµ(x)| = 0

Proof. The validity of point a) follows from formulas (3) (according to[3]). Let’s the
conditions of the theorem be satisfied for the state α = 1 of the chain. For number
ε > 0,(ε < min(π1, 1− π1)) let’s introduce the events

Bn = {|νn(1)

n
− π1| < ε} = {n(π1 − ε) < νn(1) < n(π1 + ε)}, n = 1, 2, ...

Let’s expand the distribution of the sum Sn as PSn(·) = EPSn|ξ1n
(·) = P

(1)
Sn

(·)+P
(2)
Sn

(·),
where P

(1)
Sn

(·) = EPSn|ξ1n
I(Bn) , P

(2)
Sn

(·) = EPSn|ξ1n
I(Bn). Naturally P

(1)
Sn

(·) starting from

the number n0 = [(π1− ε)−1] + 1 is an absolutely continuous measure with respect to the

Lebesgue measure. Let its Radon-Nikodim derivative be p
(1)
Sn

(x) = EpSn|ξ1n
I(Bn).
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The absolutely continuous measure would also be formed on those trajectories for
that Bn does not fulfilled, therefore, according to (4)

P
(αc)
Sn

(Rk) ≥ P
(1)
Sn

(Rk), P
(s)
Sn

(Rk) ≤ P
(2)
Sn

(Rk) = P (B̄n) ≤ 1

ε2
E|νn(α)

n
− πα|2 ≤

c(π, P, ε)

n

We fix the trajectory ξ1n and group separately those summands from (2), corre-
sponding to the terms ξi, i = 1, n of control sequence have obtained values b1, b2, ..., bs

respectively. Their number is νn(α), α = 1, s, respectively. Let’s renumber the members
of each group:

τ0(α) = 0, τm(α) = min{j|τm−1(α) < j ≤ n; ξj = bα}, m = 1, νn(α), α = 1, s.

Naturally that ξτm(α) = bα, m = 1, νn(α), α = 1, s. Representations are valid

Sn1 =
1√
n

s∑
α=1

Sn1(α), Sn1 =

νn(α)∑
m=1

[Yτm(α) − µ(α)].

For each fixed state α, vectors ξτm(α), m = 1, νn(α) are equally distributed vectors
with chain dependence. EYτm(α) = µ(α) and cov(Yτm(α) = R(α). Therefore at n →∞

sup
AεCk

|P Sn1 (α)√
νn(α)

|ξ1n

(A)− ΦR(α)(A)| → 0, almost everywhere α = 1, s

Thereby

sup
xεRk

|p Sn1 (1)
√

νn(1)
|ξ1n

(x)− ϕR(1)(x)|I(Bn) → 0, almost everywhere

For the number n (n ≥ n0) let’s designate τn = supxεRk |pSn1 |ξ1n
(x) − ϕR0(x)|I(Bn).

Let us show that τn → 0 almost everywhere. To this end, we decompose the sums Sn1

and R0 into two parts:

Sn1 =
1√
n

Sn1(1) +
1√
n

s∑
α=2

Sn1(α)

=
1√
n

Sn1(1) +
1√
n

Sn1 , R0 = π1R(1) +
s∑

α=2

παR(α) = π1R(1) + R̄0.

It is easy to determine that the conditional density of the sum 1√
n
Sn1(1) tends to the

density ϕπ1R(1) and the asymptotic distribution of the sum 1√
n
S̄n1 is ΦR0 .

Starting from the number n ≥ n0 the value τn is bounded, so that limn→∞Eτn = 0.
To prove point c) we apply the decomposition :

sup
xεRk

|p(1)
Sn

(x)− ϕR0+Tµ(x)| ≤ sup
xεRk

|EpSn|ξ1n
(x)I(Bn) − ϕR0+Tµ(x) ≤
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≤ sup
xεRk

|EpSn|ξ1n
(x)I(Bn) − EϕR0(x− Sn2)I(Bn)|+ sup

xεRk

|EϕR0(x− Sn2)− ϕR0+Tµ(x)|

+ sup
xεRk

|EϕR0(x− Sn2)I(B̄n)| ≡ I1 + I2 + I3

The following estimate is valid

I1 = sup
xεRk

|EpSn1 |ξ1n
(x− Sn2)I(Bn) − EϕR0(x− Sn2)I(Bn)|

= E sup
xεRk

|pSn1 |ξ1n
− ϕR0(x)|I(Bn) = Eτn

n→∞−→ 0.

The summand I2 would be represented as the following

I2 = sup
xεRk

|EϕR0(x− Sn2)− ϕR0+Tµ(x)| = sup
xεRk

|
∫

ϕR0(x− y)(PSn2
− PTµ)(dy)|

According to equalities (3), it’s limit is equal to zero. It’s obvious that I3
n→∞−→ 0
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