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ON THE SOLUTIONS SPACE OF THE SPECIAL TYPE RIEMANN EQUATIONS

Gogi Kezheradze

Abstract. We investigate the relation between the coefficient α, β, γ of hypergeometric equa-
tions and the order p of the space Lp and give complete answer of the question, when the
solutions belongs to Lp.
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1 Estimation of the solutions in singular points. Consider the following dif-
ferential equation with singular points 0, 1,∞

z(1− z)y′′(z) + (γ − (α + β + 1))y′(z)− αβy(z) = 0. (1)

Below we investigate the following problem: What condition should be satisfied α, β, γ
and p, so that solutions of (1) belongs to Lp?

Consider some particular cases.
It is known that the solution of differential equation (1) is a hypergeometric function,

which has the form F (α, β, γ, z) =
∑∞

k=0
(α)k(β)k

(γ)kk!
zk, where (α)n = α(α + 1)(α + 2)...(α +

(n− 1)).

Example 1.

F (1, 1, 2,−z) =
∞∑

k=0

k!k!

(k + 1)!k!
(−z)k =

1

z

∞∑
k=0

(−1)k

k + 1
zk+1 =

ln(1 + z)

z
.

Suppose we have the curve Γ = eit, 0 ≤ t ≤ 2π. ln(1 + eiπ) = −∞, therefore ln(1 + eit) is
not bounded on the interval t ∈ [0, 2π], hence∫

Γ

∣∣ ln(1 + z)

z
dz

∣∣ =

∫ 2π

0

∣∣ ln(1 + eit)ieit

eit
dt

∣∣ =

∫ 2π

0

|ln(1 + eit)|dt = ∞,

therefore F (1, 1, 2,−z) /∈ L1(Γ) and since L1(Γ) ⊃ L2(Γ) ⊃ L3(Γ) ⊃ L4(Γ) ⊃ ...,
F (1, 1, 2,−z) /∈ Lp(Γ) (1 ≤ p < ∞). In addition, since the space L∞ has a maximum
norm ( max

t∈[0,2π]
|ln(1 + eit)| = ∞), F (1, 1, 2,−z) /∈ L∞(Γ).
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Example 2. If α = β = γ = 1, then

F (1, 1, 1, z) =
∞∑

k=0

(1)k(1)k

(1)kk!
zk =

∞∑
k=0

k!k!

k!k!
zk =

∞∑
k=0

zk =
1

1− z
, (|z| < 1).

If Γ = Reit, where |R| < 1 and 0 ≤ t ≤ 2π,∫
Γ

1

1− z
dz =

∫ 2π

0

iReit

1−Reit
dt = iR

∫ 2π

0

eit

1−Reit
dt =

∫ R

R

1

1− u
du = 0.

(Reit = u, t = 0 =⇒ u = R, t = 2π =⇒ u = R, Rieitdt = du =⇒ dt = du
Rieit ).

Since |R| < 1 is fixed =⇒ Reit 6= 1 for all 0 ≤ t ≤ 2π =⇒ 1−Reit 6= 0, 0 ≤ t ≤ 2π,

hence any Lp(Γ) norm
( ∫

Γ
|f(z)|dz

) 1
p (1 ≤ p < ∞) is bounded, when maximum norm

p = ∞ is also bounded. Therefore F (1, 1, 1, z) = 1
1−z

∈ Lp(Γ), when |z| < 1, (1 ≤ p ≤ ∞).

Example 3. Simply can be obtained by induction higher order derivative formula for
hypergeometric function.

dn

dzn
F (α, β, γ, z) =

αnβn

γn
F (α + n, β + n, γ + n, z).

dn

dzn F (1, 1, 1, z) =
(

1
1−z

)(n)
= P (z)

(1−z)2
n , where deg(P (z)) < 2n, hence every derivative of

F (1, 1, 1, z) consists of some power (grater than 1) of (1 − z) in the denominator, but if
we take again Γ = Reit, where |R| < 1 and 0 ≤ t ≤ 2π, similar to the previous reasoning
we will get dn

dzn F (1, 1, 1, z) = F (m, m,m, z) ∈ Lp(Γ), (1 ≤ p ≤ ∞).

If α ∈ Z− = {...,−3,−2,−1} (the same discussion works in the case of β and γ ),

then (α)|α|+1 = 0, hence F (α, β, γ, z) =
∑∞

k=0
(α)k(β)k

(γ)kk!
zk =

∑|α|
k=0

(α)k(β)k

(γ)kk!
zk. The last sum

is finite, hence it is a polynomial with rational coefficients and with |α| degree, therefore
for all sufficiently smooth, bounded curves Γ ⊂ C F (α, β, γ, z) ∈ Lp(Γ), 1 ≤ p ≤ ∞.
Hence, if α, β or γ ∈ Z− = {...,−3,−2,−1}, F (α, β, γ, z) ∈ Lp(Γ), 1 ≤ p ≤ ∞.

The second linearly independent solution of equation (1) is

z1−γF (1− γ + α, 1− γ + β, 2− γ, z) =
∞∑

k=0

(1− γ + α)k(1− γ + β)k

(2− γ)kk!
zk+1−γ. (2)

which diverges in C, when z ∈{z : |z| = 1}.
If one of them from next conditions is satisfied (α, β, γ ∈ Z): 1+α < γ, 1+β < γ, 2 <

γ, then from series (2) will survive only a finite sum, hence z1−γF (1−γ+α, 1−γ+β, 2−γ, z)
will be a polynomial with finite m ∈ N degree and implies, for all sufficiently smooth and
bounded curves Γ ⊂ C z1−γF (1− γ + α, 1− γ + β, 2− γ, z) ∈ Lp(Γ), 1 ≤ p ≤ ∞.
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2 On the Legendre equation. In this section we find the solutions of the Leg-
endre equation

(1− z2)y′′(z)− 2zy′(z) + k(k + 1)y(z) = 0, (3)

as power series.
Since z = 0 is not a singular point of differential equation (3), we are allowed to search

solution of equation (3) in the form

y(z) =
∞∑

n=0

anz
n. (4)

So, we search coefficients an (n = 0, 1, 2, ...) such that power series (4) representing
the solution of equation (3).

If we use the rule of power series differentiation and input results in equation (3), we
will get

(1− z2)
∞∑

n=2

ann(n− 1)zn−2 − 2z
∞∑

n=1

annzn−1 + k(k + 1)
∞∑

n=0

anz
n = 0,

By the elementary transformations we will have the following expression.

∞∑
n=0

[an+2(n + 2)(n + 1)− ann(n− 1)− 2ann + k(k + 1)an]zn = 0.

Therefore, since the system of polynomials {1, z, z2, ..., zn, ...} is linearly independent, its
coefficients have to be zero. It means that

an+2 =
an(n− k)(n + k + 1)

(n + 2)(n + 1)
. (5)

For fixed k the second linearly independent solution can be found as follows. For
simplicity assume k = 1, the similar method can be used for other fixed k.

In the case k = 1, we have already known that the first order Legendre polynomial
P1(z) is a solution of differential equation (3). Based on that vector (1, 0) is linearly
independent from vector (0, 1), if we set a0 = 1 and a1 = 0 next process gives us linearly
independent solution of differential equation (3), because a2m+1 (m = 1, 2, 3, ...) belongs
a1 as a multiplier and a2m (m = 1, 2, 3, ...) belongs a0 as a multiplier.

a1 = 0, by using (5) recursive relation we will have a2m+1 = 0 (m = 1, 2, 3, ...).
simply can be obtained by induction that an+2 = − 1

n+1
, for all even n.

Therefore the second linearly independent solution of (3) is

y(z) = 1− z2 − 1

3
z4 − 1

5
z6 − 1

7
z8 − 1

9
z10 − 1

11
z12 + ... =

∞∑
n=0

a2nz
2n. (6)
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In addition
∑∞

n=0 |a2nz
2n| =

∑∞
n=0 |a2n||z2n| =

∑∞
n=0 |a2n||z|2n.

To prove that series (6) diverges when |z| = 1, consider the series
∑∞

n=1 bn, where
bn = 1

10n+1
.

n = 0, a0 = 1 =⇒ |a0| ≥ 1
10×0+1

= b0, suppose a2n ≥ bn, when n ≥ 1 and show that
a2n+2 ≥ bn+1.

|a2n+2| =
|a2n|(2n− 1)

2n + 1
≥ 1

10× n + 1

2n− 1

2n + 1
=

2n− 1

20n2 + 12n + 1

>
2n− 2

20n2 + 20n + 2n
=

n− 1

n(10n + 11)
≥ 1

n(10n + 11)
≥ 1

10(n + 1) + 1
= bn+1.

Therefore, by induction we get a2n ≥ bn for all n = 0, 1, 2, ... . Hence,

∞∑
n=0

|a2n| ≥
∞∑

n=0

1

10n + 1
>

∞∑
n=0

1

10n + 10
=

1

10

∞∑
n=0

1

n + 1
=

1

10

∞∑
m=1

1

m
.

∑∞
m=1

1
m

is a divergent series. Therefore by comparison test
∑∞

n=0 |a2n| diverges.
But all terms a2n < 0 except a0 = 1 (finite number of elements does not affect the
convergence of series), implies

∑∞
n=1 a2n = −

∑∞
n=1 |a2n|, therefore

∑∞
n=0 a2n diverges.

Now, when |z| = 1,
∑∞

n=0 a2nz
2n =

∑∞
n=0 a2ncos(2nt) + i

∑∞
n=0 a2nsin(2nt). It is obvi-

ous, that either cos2(2nt) ≥ 1
2

or sin2(2nt) ≥ 1
2
. Without loss of generality, for fixed

t0 ∈ [0, 2π] suppose cos2(2nt0) ≥ 1
2

(same arguments work if sin2(2nt) ≥ 1
2
), then

|cos(2nt0)| ≥
∣∣ 1√

2

∣∣, hence either cos(2nt0) ≥ 1√
2

or cos(2nt0) ≤ − 1√
2
. If cos(2nt0) ≥ 1√

2
,

then
∑∞

n=0 a2ncos(2nt0) ≥ 1√
2

∑∞
n=0 a2n, hence by the series comparison test, (6) series

diverges at t0. Now, if cos(2nt0) ≤ − 1√
2
, implies −cos(2nt0) ≥ 1√

2
. Therefore, by using

this inequality and series comparison test, we will get divergence of series (6) taken with
− sign, hence we have divergence of series (6) at t0. But t0 ∈ [0, 2π] was arbitrary, there-
fore series (6) diverges for all t ∈ [0, 2π]. Above we use the theorem, which says: complex
series converges if and only if its both real and imaginary part converges.

Similarly can be found the second linearly independent solution of (1) equation for
k = 2, 3, 4, ... and its divergence can be established, when |z| = 1.
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