Reports of Enlarged Sessions of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 36, 2022

ON THE SOLUTIONS SPACE OF THE SPECIAL TYPE RIEMANN EQUATIONS

Gogi Kezheradze

Abstract. We investigate the relation between the coefficient α, β, γ of hypergeometric equations and the order p of the space L^{p} and give complete answer of the question, when the solutions belongs to L^{p}.

Keywords and phrases: Convergent hypergeometric series, basis of solution, extension of solutions.

AMS subject classification (2010): 35J10, 33C45.

1 Estimation of the solutions in singular points. Consider the following differential equation with singular points $0,1, \infty$

$$
\begin{equation*}
z(1-z) y^{\prime \prime}(z)+(\gamma-(\alpha+\beta+1)) y^{\prime}(z)-\alpha \beta y(z)=0 \tag{1}
\end{equation*}
$$

Below we investigate the following problem: What condition should be satisfied α, β, γ and p, so that solutions of (1) belongs to L^{p} ?

Consider some particular cases.
It is known that the solution of differential equation (1) is a hypergeometric function, which has the form $F(\alpha, \beta, \gamma, z)=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}(\beta)_{k}}{(\gamma)_{k} k!} z^{k}$, where $(\alpha)_{n}=\alpha(\alpha+1)(\alpha+2) \ldots(\alpha+$ $(n-1)$).

Example 1.

$$
F(1,1,2,-z)=\sum_{k=0}^{\infty} \frac{k!k!}{(k+1)!k!}(-z)^{k}=\frac{1}{z} \sum_{k=0}^{\infty} \frac{(-1)^{k}}{k+1} z^{k+1}=\frac{\ln (1+z)}{z} .
$$

Suppose we have the curve $\Gamma=e^{i t}, 0 \leq t \leq 2 \pi \cdot \ln \left(1+e^{i \pi}\right)=-\infty$, therefore $\ln \left(1+e^{i t}\right)$ is not bounded on the interval $t \in[0,2 \pi]$, hence

$$
\int_{\Gamma}\left|\frac{\ln (1+z)}{z} d z\right|=\int_{0}^{2 \pi}\left|\frac{\ln \left(1+e^{i t}\right) i e^{i t}}{e^{i t}} d t\right|=\int_{0}^{2 \pi}\left|\ln \left(1+e^{i t}\right)\right| d t=\infty
$$

therefore $F(1,1,2,-z) \notin L^{1}(\Gamma)$ and since $L^{1}(\Gamma) \supset L^{2}(\Gamma) \supset L^{3}(\Gamma) \supset L^{4}(\Gamma) \supset \ldots$, $F(1,1,2,-z) \notin L^{p}(\Gamma)(1 \leq p<\infty)$. In addition, since the space L^{∞} has a maximum $\operatorname{norm}\left(\max _{t \in[0,2 \pi]}\left|\ln \left(1+e^{i t}\right)\right|=\infty\right), F(1,1,2,-z) \notin L^{\infty}(\Gamma)$.

Example 2. If $\alpha=\beta=\gamma=1$, then

$$
F(1,1,1, z)=\sum_{k=0}^{\infty} \frac{(1)_{k}(1)_{k}}{(1)_{k} k!} z^{k}=\sum_{k=0}^{\infty} \frac{k!k!}{k!k!} z^{k}=\sum_{k=0}^{\infty} z^{k}=\frac{1}{1-z},(|z|<1) .
$$

If $\Gamma=R e^{i t}$, where $|R|<1$ and $0 \leq t \leq 2 \pi$,

$$
\int_{\Gamma} \frac{1}{1-z} d z=\int_{0}^{2 \pi} \frac{i R e^{i t}}{1-R e^{i t}} d t=i R \int_{0}^{2 \pi} \frac{e^{i t}}{1-R e^{i t}} d t=\int_{R}^{R} \frac{1}{1-u} d u=0
$$

$\left(R e^{i t}=u, t=0 \Longrightarrow u=R, t=2 \pi \Longrightarrow u=R, R_{i e}{ }^{i t} d t=d u \Longrightarrow d t=\frac{d u}{R e^{i t}}\right)$.
Since $|R|<1$ is fixed $\Longrightarrow R e^{i t} \neq 1$ for all $0 \leq t \leq 2 \pi \Longrightarrow 1-R e^{i t} \neq 0,0 \leq t \leq 2 \pi$, hence any $L^{p}(\Gamma)$ norm $\left(\int_{\Gamma}|f(z)| d z\right)^{\frac{1}{p}}(1 \leq p<\infty)$ is bounded, when maximum norm $p=\infty$ is also bounded. Therefore $F(1,1,1, z)=\frac{1}{1-z} \in L^{p}(\Gamma)$, when $|z|<1,(1 \leq p \leq \infty)$.

Example 3. Simply can be obtained by induction higher order derivative formula for hypergeometric function.

$$
\frac{d^{n}}{d z^{n}} F(\alpha, \beta, \gamma, z)=\frac{\alpha^{n} \beta^{n}}{\gamma^{n}} F(\alpha+n, \beta+n, \gamma+n, z) .
$$

$\frac{d^{n}}{d z^{n}} F(1,1,1, z)=\left(\frac{1}{1-z}\right)^{(n)}=\frac{P(z)}{(1-z)^{2^{n}}}$, where $\operatorname{deg}(P(z))<2^{n}$, hence every derivative of $F(1,1,1, z)$ consists of some power (grater than 1) of $(1-z)$ in the denominator, but if we take again $\Gamma=R e^{i t}$, where $|R|<1$ and $0 \leq t \leq 2 \pi$, similar to the previous reasoning we will get $\frac{d^{n}}{d z^{n}} F(1,1,1, z)=F(m, m, m, z) \in L^{p}(\Gamma),(1 \leq p \leq \infty)$.

If $\alpha \in \mathbb{Z}_{-}=\{\ldots,-3,-2,-1\}$ (the same discussion works in the case of β and γ), then $(\alpha)_{|\alpha|+1}=0$, hence $F(\alpha, \beta, \gamma, z)=\sum_{k=0}^{\infty} \frac{(\alpha)_{k}(\beta)_{k}}{(\gamma)_{k} k!} z^{k}=\sum_{k=0}^{|\alpha|} \frac{(\alpha)_{k}(\beta)_{k}}{(\gamma)_{k} k!} z^{k}$. The last sum is finite, hence it is a polynomial with rational coefficients and with $|\alpha|$ degree, therefore for all sufficiently smooth, bounded curves $\Gamma \subset \mathbb{C} F(\alpha, \beta, \gamma, z) \in L^{p}(\Gamma), 1 \leq p \leq \infty$. Hence, if α, β or $\gamma \in \mathbb{Z}_{-}=\{\ldots,-3,-2,-1\}, F(\alpha, \beta, \gamma, z) \in L^{p}(\Gamma), 1 \leq p \leq \infty$.

The second linearly independent solution of equation (1) is

$$
\begin{equation*}
z^{1-\gamma} F(1-\gamma+\alpha, 1-\gamma+\beta, 2-\gamma, z)=\sum_{k=0}^{\infty} \frac{(1-\gamma+\alpha)_{k}(1-\gamma+\beta)_{k}}{(2-\gamma)_{k} k!} z^{k+1-\gamma} \tag{2}
\end{equation*}
$$

which diverges in \mathbb{C}, when $z \in\{z:|z|=1\}$.
If one of them from next conditions is satisfied $(\alpha, \beta, \gamma \in \mathbb{Z}): 1+\alpha<\gamma, 1+\beta<\gamma, 2<$ γ, then from series (2) will survive only a finite sum, hence $z^{1-\gamma} F(1-\gamma+\alpha, 1-\gamma+\beta, 2-\gamma, z)$ will be a polynomial with finite $m \in \mathbb{N}$ degree and implies, for all sufficiently smooth and bounded curves $\Gamma \subset \mathbb{C} z^{1-\gamma} F(1-\gamma+\alpha, 1-\gamma+\beta, 2-\gamma, z) \in L^{p}(\Gamma), 1 \leq p \leq \infty$.

2 On the Legendre equation. In this section we find the solutions of the Legendre equation

$$
\begin{equation*}
\left(1-z^{2}\right) y^{\prime \prime}(z)-2 z y^{\prime}(z)+k(k+1) y(z)=0 \tag{3}
\end{equation*}
$$

as power series.
Since $z=0$ is not a singular point of differential equation (3), we are allowed to search solution of equation (3) in the form

$$
\begin{equation*}
y(z)=\sum_{n=0}^{\infty} a_{n} z^{n} \tag{4}
\end{equation*}
$$

So, we search coefficients $a_{n}(n=0,1,2, \ldots)$ such that power series (4) representing the solution of equation (3).

If we use the rule of power series differentiation and input results in equation (3), we will get

$$
\left(1-z^{2}\right) \sum_{n=2}^{\infty} a_{n} n(n-1) z^{n-2}-2 z \sum_{n=1}^{\infty} a_{n} n z^{n-1}+k(k+1) \sum_{n=0}^{\infty} a_{n} z^{n}=0
$$

By the elementary transformations we will have the following expression.

$$
\sum_{n=0}^{\infty}\left[a_{n+2}(n+2)(n+1)-a_{n} n(n-1)-2 a_{n} n+k(k+1) a_{n}\right] z^{n}=0
$$

Therefore, since the system of polynomials $\left\{1, z, z^{2}, \ldots, z^{n}, \ldots\right\}$ is linearly independent, its coefficients have to be zero. It means that

$$
\begin{equation*}
a_{n+2}=\frac{a_{n}(n-k)(n+k+1)}{(n+2)(n+1)} \tag{5}
\end{equation*}
$$

For fixed k the second linearly independent solution can be found as follows. For simplicity assume $k=1$, the similar method can be used for other fixed k.

In the case $k=1$, we have already known that the first order Legendre polynomial $P_{1}(z)$ is a solution of differential equation (3). Based on that vector $(1,0)$ is linearly independent from vector $(0,1)$, if we set $a_{0}=1$ and $a_{1}=0$ next process gives us linearly independent solution of differential equation (3), because $a_{2 m+1}$ ($m=1,2,3, \ldots$) belongs a_{1} as a multiplier and $a_{2 m}(m=1,2,3, \ldots)$ belongs a_{0} as a multiplier.
$a_{1}=0$, by using (5) recursive relation we will have $a_{2 m+1}=0(m=1,2,3, \ldots)$.
simply can be obtained by induction that $a_{n+2}=-\frac{1}{n+1}$, for all even n.
Therefore the second linearly independent solution of (3) is

$$
\begin{equation*}
y(z)=1-z^{2}-\frac{1}{3} z^{4}-\frac{1}{5} z^{6}-\frac{1}{7} z^{8}-\frac{1}{9} z^{10}-\frac{1}{11} z^{12}+\ldots=\sum_{n=0}^{\infty} a_{2 n} z^{2 n} \tag{6}
\end{equation*}
$$

In addition $\sum_{n=0}^{\infty}\left|a_{2 n} z^{2 n}\right|=\sum_{n=0}^{\infty}\left|a_{2 n}\right|\left|z^{2 n}\right|=\sum_{n=0}^{\infty}\left|a_{2 n}\right||z|^{2 n}$.
To prove that series (6) diverges when $|z|=1$, consider the series $\sum_{n=1}^{\infty} b_{n}$, where $b_{n}=\frac{1}{10 n+1}$.
$n=0, a_{0}=1 \Longrightarrow\left|a_{0}\right| \geq \frac{1}{10 \times 0+1}=b_{0}$, suppose $a_{2 n} \geq b_{n}$, when $n \geq 1$ and show that $a_{2 n+2} \geq b_{n+1}$.

$$
\begin{gathered}
\left|a_{2 n+2}\right|=\frac{\left|a_{2 n}\right|(2 n-1)}{2 n+1} \geq \frac{1}{10 \times n+1} \frac{2 n-1}{2 n+1}=\frac{2 n-1}{20 n^{2}+12 n+1} \\
>\frac{2 n-2}{20 n^{2}+20 n+2 n}=\frac{n-1}{n(10 n+11)} \geq \frac{1}{n(10 n+11)} \geq \frac{1}{10(n+1)+1}=b_{n+1} .
\end{gathered}
$$

Therefore, by induction we get $a_{2 n} \geq b_{n}$ for all $n=0,1,2, \ldots$. Hence,

$$
\sum_{n=0}^{\infty}\left|a_{2 n}\right| \geq \sum_{n=0}^{\infty} \frac{1}{10 n+1}>\sum_{n=0}^{\infty} \frac{1}{10 n+10}=\frac{1}{10} \sum_{n=0}^{\infty} \frac{1}{n+1}=\frac{1}{10} \sum_{m=1}^{\infty} \frac{1}{m}
$$

$\sum_{m=1}^{\infty} \frac{1}{m}$ is a divergent series. Therefore by comparison test $\sum_{n=0}^{\infty}\left|a_{2 n}\right|$ diverges. But all terms $a_{2 n}<0$ except $a_{0}=1$ (finite number of elements does not affect the convergence of series), implies $\sum_{n=1}^{\infty} a_{2 n}=-\sum_{n=1}^{\infty}\left|a_{2 n}\right|$, therefore $\sum_{n=0}^{\infty} a_{2 n}$ diverges. Now, when $|z|=1, \sum_{n=0}^{\infty} a_{2 n} z^{2 n}=\sum_{n=0}^{\infty} a_{2 n} \cos (2 n t)+i \sum_{n=0}^{\infty} a_{2 n} \sin (2 n t)$. It is obvious, that either $\cos ^{2}(2 n t) \geq \frac{1}{2}$ or $\sin ^{2}(2 n t) \geq \frac{1}{2}$. Without loss of generality, for fixed $t_{0} \in[0,2 \pi]$ suppose $\cos ^{2}\left(2 n t_{0}\right) \geq \frac{1}{2}$ (same arguments work if $\sin ^{2}(2 n t) \geq \frac{1}{2}$), then $\left|\cos \left(2 n t_{0}\right)\right| \geq\left|\frac{1}{\sqrt{2}}\right|$, hence either $\cos \left(2 n t_{0}\right) \geq \frac{1}{\sqrt{2}}$ or $\cos \left(2 n t_{0}\right) \leq-\frac{1}{\sqrt{2}}$. If $\cos \left(2 n t_{0}\right) \geq \frac{1}{\sqrt{2}}$, then $\sum_{n=0}^{\infty} a_{2 n} \cos \left(2 n t_{0}\right) \geq \frac{1}{\sqrt{2}} \sum_{n=0}^{\infty} a_{2 n}$, hence by the series comparison test, (6) series diverges at t_{0}. Now, if $\cos \left(2 n t_{0}\right) \leq-\frac{1}{\sqrt{2}}$, implies $-\cos \left(2 n t_{0}\right) \geq \frac{1}{\sqrt{2}}$. Therefore, by using this inequality and series comparison test, we will get divergence of series (6) taken with - sign, hence we have divergence of series (6) at t_{0}. But $t_{0} \in[0,2 \pi]$ was arbitrary, therefore series (6) diverges for all $t \in[0,2 \pi]$. Above we use the theorem, which says: complex series converges if and only if its both real and imaginary part converges.

Similarly can be found the second linearly independent solution of (1) equation for $k=2,3,4, \ldots$ and its divergence can be established, when $|z|=1$.

Received 12.05.2022; revised 24.07.2022; accepted 25.09.2022.
Author(s) address(es):
Gogi Kezheradze
Department of Mathematics, Faculty of Exact and Natural Sciences,
I. Javakhishvili Tbilisi State University

University str. 13, 0186 Tbilisi, Georgia
E-mail: gogi.kezheradze260@ens.tsu.edu.ge

