
Reports of Enlarged Sessions of the
Seminar of I. Vekua Institute
of Applied Mathematics
Volume 36, 2022

ON INVESTIGATION AND APPROXIMATE SOLUTION OF TWO SYSTEMS OF
NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS ?

Temur Jangveladze

Abstract. One-dimensional two models based on Maxwell’s well-known system of nonlinear
partial differential equations (SNPDE), describing the process of penetration of a magnetic field
in a substance are considered. A unique solvability of the corresponding initial-boundary value
problems and the convergence of finite-difference schemes are presented.
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Numerous scientific works, monographs and textbooks are devoted to the research
of the SNPDE. One model of such type describing the process of electromagnetic field
penetration in the substance is a well known system of Maxwell equations [1]:

∂H

∂t
= −rot (νmrotH) , (1)

∂Θ

∂t
= rot (νmrotH) , (2)

where H = (H1, H2, H3) is a vector of the magnetic field, Θ is temperature, νm character-
izes the electro-conductivity of the substance. As a rule, these coefficients are functions
of the argument Θ. Equations (1) describe the process of diffusion of the magnetic field
and equation (2) is change of the temperature at the expense of Joule heating. By the
abovementioned Maxwell’s system many important processes are described (see, e.g., [2]).

System (1), (2) does not take into account many physical effects. For a more thorough
description, first of all it is desirable to take into consideration heat conductivity. In this
case together with (1) instead of (2) the following equation is considered [1]

∂Θ

∂t
= νm (rotH)2 + div (kmgradΘ) , (3)

where km is a coefficient of heat conductivity. This coefficient is a function of Θ as well.
Note that, system (1), (2) can be reduced to the integro-differential form [3]. Many

works are devoted to the investigation and numerical solution of initial-boundary value
problems for (1), (2) and (1), (3) systems and for integro-differential models corresponding
to (1), (2) (see, for example, [4]-[16] and references therein).
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Some aspects of the investigation and numerical solution of the one-dimensional ver-
sion of system (1), (2) and (1), (3) in case of one-component magnetic field, are given, for
example, in the works [2], [3], [5], [6], [11], [13].

Our aim is to consider one-dimensional version of systems (1), (2) and (1), (3) in case of
the two-components magnetic field. Especially, unique solvability and the finite-difference
schemes for some nonlinearities are constructed and investigated.

For most of SNPDEs it is very difficult to find exact solutions and there is no general
solution available in a closed form. It is known that the exact solution for SNPDEs can
be constructed in some particular cases.

In the domain Q = (0; 1)× (0;∝), let us consider the following initial-boundary value
problem for Maxwell’s type one-dimensional (1), (2) system:

∂U

∂t
=

∂

∂x

(
Sα∂U

∂x

)
,

∂V

∂t
=

∂

∂x

(
Sα∂V

∂x

)
, (4)

∂S

∂t
= Sα

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
, (5)

U(0, t) = V (0, t) = 0, U(1, t) = ψ1 > 0, V (1, t) = ψ2 > 0, (6)

U(x, 0) = U0(x), V (x, 0) = V0(x), S(x, 0) = S0(x). (7)

Here (x, t) ∈ Q; α ∈ R; ψ1, ψ2 are positive constants, and U0(x), V0(x), S0(x) are the given
smooth functions and U0(0) = V0(0) = 0, U0(1) = ψ1, V0(1) = ψ2. Some qualitative and
structural properties of solutions of (4)-(7) type problems are established in many works.

It is easy to check that if U0(x) = ψ1x, V0(x) = ψ2x and S0(x) = S0 = const > 0, then
when α 6= 1 the solution of problem (4)-(7) is:

U(x, t) = ψ1(x), V (x, t) = ψ2(x), S(x, t) =
[
S1−α

0 + (1− α(ψ2
1 + ψ2

2)t
] 1

1−α . (8)

When t0 = S1−α
0 \ [(ψ2

1 + ψ2
2)(α − 1)] and α > 1, from (8), it can be found that the

function S(x, t) is not bounded. The above example shows that (4) - (7) has no global
solution at all. So, the solution of problem (4) - (7) with smooth initial and boundary
conditions can be blown up at a finite time. The questions of unique solvability of some
cases of these type problems are studied in the abovementioned literature and in a number
of other works as well. Using [2] it is not difficult to prove the following statement.

Theorem 1. If |α| 6 1/2, then the problem (4)-(7) has a unique solution.

Note that if we add to (6) the following boundary conditions:

∂S

∂x

∣∣∣∣
x=0

=
∂S

∂x

∣∣∣∣
x=1

, (9)

then (U, V, S) defined by formulas (8) are also solutions of system with equations (4) and

∂S

∂x
= Sα

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]

+
∂2S

∂x2
, (10)
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with (6), (7), (9) boundary and initial conditions. We conclude that for α > 1, neither
(4), (6), (7), (9), (10) problem has a global solution.

Introducing the following notation E = S1/2 problem (4)-(7) takes the form:

∂U

∂t
− ∂

∂x

(
E2α∂U

∂x

)
= 0,

∂V

∂t
− ∂

∂x

(
E2α∂V

∂x

)
= 0, (11)

∂E

∂t
=

1

2
E2α−1

[(
∂U

∂x

)2

+

(
∂V

∂x

)2
]
, (12)

U(0, t) = V (0, t) = 0, U(1, t) = ψ1, V (1, t) = ψ2, (13)

U(x, 0) = U0(x), V (x, 0) = V0(x). (14)

Let us construct the usual grid on [0, 1]× [0, T ] and introduce the following notation
[17]:

h = 1/M, τ = T/j, xi = ih, tj = jτ, uj
i = u(xi, tj),

ω = {xi = ih, i = 0, 1, ...,M}, ω∗h = {xi = (i− 1/2)h, i = 0, 1, ...,M} ,
ωτ = {τj = jτ, i = 0, 1, ...,M}, ωhτ = ωτ × ω∗τ , ω∗hτ = ω∗h × ωτ ,

ux =
ui+1 − ui

h
, ux =

ui − ui−1

h
, ui = uj+1

i , ut =
ui − uj

i

h
.

Using usual notations and technique of building the finite-difference schemes (see,
for example, [17]) let us construct an implicit finite-difference scheme for the problem
(11)-(14):

uj
t = (e2αux)x, vj

t = (e2αvx)x, (15)

ej
t =

1

2
e2α−1(u2

x + v2
x), (16)

uj
0 = vj

0 = 0, uj
M = ψ1, vj

M = ψ2. j = 0, 1, ...J, (17)

u0
i = U0(xi), v0

i = V0(xi), e0i =
[
S0

(
xi+1/2

)]1/2
, i = 0, 1, ...M − 1, (18)

where u and v functions are defined on the grid $hτ and the function e is defined on the
grid ω∗hτ . Here and below, unindexed values mean that the grid functions are taken at
the point (xi, tj+1) or (xi−1/2, tj+1).

The approximations of the (15) - (18) scheme on the smooth solutions of problem
(11)-(14) are of the order O(τ + h2). The following statement is fair.

Theorem 2. If |α| 6 1/2, then the scheme (15)-(18) converges to a solution of problem
(11)-(14) in the grid functions space L2 and the order of convergence is O(τ + h2).

Statements analogical to Theorems 1, 2 are true for problem (4),(6),(7),(9),(10) too.
The proof of the theorems presented in this article for wider nonlinearity, the descrip-

tion of algorithms for the approximate solution of the problems under discussion, and the
presentation the results of the corresponding numerical experiments are planned in the
next note.
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