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Abstract. One system of nonlinear partial differential equations is considered. Uniqueness and

stability of solution of initial-boundary value problem is studied.
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The mathematical description of many processes is carried out partially by differential
equations and their systems. The types of models of the system of nonlinear equations
discussed in this article are partially derived from the description of real diffusion processes
(see, for instance, [1]-[7], [10] and references therein), and on the other hand, in the
generalization of well-known equations and systems of equations, the study of which is
devoted to many scientific papers (see, for instance, [8], [9] and references therein).

Our article discusses one system of nonlinear partial differential equations [3]. The
uniqueness and stability of the solution of the initial-boundary value problem are inves-
tigated.

In the rectangle {(x, t)|x ∈ [0, 1]; t ∈ [0, T ]}, where T = const > 0, consider the
following initial-boundary value problem:

∂U

∂t
+

∂2

∂x2

[
(1 + V )

∂2U

∂x2

]
= f (x, t) , (1)

∂V

∂t
=

(
∂2U

∂x2

)2

, (2)

U(0, t) = U(1, t) = 0,
∂2U

∂x2
(0, t) =

∂2U

∂x2
(1, t) = 0, (3)

U(x, 0) = U0(x), V (x, 0) = 0. (4)

Multiply equation (1) by U and integrate the obtained equation by [0, 1]. If use the
formula of integration by parts twice and boundary conditions (3), we get

1

2

∫ 1

0

∂U2

∂t
dx+

∫ 1

0

[
(1 + V )

∂2U

∂x2

]
∂2U

∂x2
dx =

∫ 1

0

f(x, t)Udx.

Since V (x, t) ≥ 0, we use the inequality ab ≤ 1
2
a2 + 1

2
b2, we obtain:
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∫ 1

0

∂U2

∂t
dx+
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0

(
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)2

dx ≤ 1

2

∫ 1

0

f 2dx+
1

2

∫ 1

0

U2dx.

The condition (3) allows us to use the Poincaré-Friedrichs inequality [8]∫ 1

0

U2dx ≤
∫ 1

0

(
∂U

∂x

)2

dx ≤
∫ 1

0

(
∂2U

∂x2

)2

dx,

so we have:
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0

∂U2

∂t
dx+

∫ 1

0

(
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∂x2

)2

dx ≤ 1

2

∫ 1

0

f 2dx+
1

2

∫ 1

0

(
∂2U

∂x2

)2

dx,

d

dt
‖U‖2 ≤ ‖f‖2.

After integrating over t, taking into account the initial condition (4), we have:

‖U‖2 ≤
∫ t

0

‖f(τ)‖2dτ + ‖U0‖2.

These inequalities and equations (2) allow rating V on f(x, t) and U0(x).
The resulting estimates means the stability of the solution of problem (1)-(4) with

respect to the right hand side and the initial conditions.
Now, let’s prove the uniqueness of the solution for (1)-(4). Suppose that (U1, V1) and

(U2, V2) are two solutions of problem (1)-(4). For W = U1 − U2, Z = V1 − V2 we have:

∂W

∂t
+

∂2

∂x2

[
∂2W

∂x2
+ V1

∂2U1

∂x2
− V2

∂2U2

∂x2

]
= 0, (5)

∂Z

∂t
=

(
∂2U1

∂x2

)2

−
(
∂2U2

∂x2

)2

, (6)

W (0, t) = W (1, t) = 0,
∂2W

∂x2
(0, t) =

∂2W

∂x2
(1, t) = 0, (7)

W (x, 0) = Z(x, 0) = 0, V1(0, t) = V2(1, t) = 0. (8)

Let us multiply equation (5) by W and integrate the obtained equation by [0, 1]. If we
use the formula of integration by parts twice, boundary conditions (7), we get:

1

2

d

dt
‖W‖2 +

(
∂2W

∂x2

)2

+

∫ 1

0

(
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∂2U1
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∂x2
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∂x2
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dx = 0.

Use the easily verifiable inequality
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(ca− db)(a− b) ≥ 1

2
(c− d)(a2 − b2),

where assuming that

a =
∂2U1

∂x2
, b =

∂2U2

∂x2
c = V1, d = V2.

Since

V1(x, t) =

∫ t

0

(
∂2U1

∂x2

)2

dτ, V2(x, t) =

∫ t

0

(
∂2U2

∂x2

)2

dτ.

We have

d

dt
||W ||2 +

∫ 1

0

∫ t

o

[(
∂2U1

∂x2

)2

−
(
∂2U2

∂x2

)2
]
dτ ·

(
∂2U1

∂x2
− ∂2U1

∂x2

)
dx ≤ 0.

From (6):

Z(x, t) =

∫ t

0

[(
∂2U1

∂x2

)2

−
(
∂2U2

∂x2

)2
]
dτ,

Finally, we get

d

dt
‖W‖2 +

1

2

d

dt
||Z||2 ≤ 0.

After integrating over t and taking into account the initial condition (8), we obtain

‖W‖2 +
1

2
‖Z‖2 ≤ 0,

which proves the uniqueness of the solution of problem (1)-(4).
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