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ON THE PROPAGATION OF AN EXPLOSIVE SHOCK WAVE IN A
HOMOGENEOUS GRAVITATING THREE-AXIS GAS ELLIPSOID OF ROTATION

Temur Chilachava

Abstract. In this paper, we consider a non-self-similar problem of a central explosion of a
homogeneous gaseous three-axis ellipsoid located in its own gravitational field and solid-body
rotating around an z axis with a constant ω angular velocity. As initial data, the exact solution
of the problem of stationary solid-state rotation of a homogeneous three-axis gas Jacobi ellipsoid
is considered. It is assumed that at the initial moment of time a central explosion occurs with
the release of finite energy. In this case, a diverging shock wave is formed in the center (a
discontinuity surface of the first kind of the unknown functions). To solve the problem, we
used the previously proposed asymptotic method of a thin shock layer. Zero approximations are
found for the singular asymptotic expansion of the law and the velocity of the medium behind
the shock wave, as well as the thermodynamic characteristics of the gravitating gas.
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1 Introduction. To solve many problems of astrophysics, it is necessary to study
the dynamics of gaseous bodies interacting with a gravitational field [1–7]. Numerous
observations show that stars rotate.The study of rotating gravitating gaseous bodies has
a long history and originates in the classical works of Newton, Maclaurin, Jacobi, Liouville,
Dirichlet, Dedekind, Riemann, Poincar, Lyapunov and others [8].

2 The system of equations in partial derivatives. When considering explo-
sive phenomena in gravitational bodies, it is convenient to use the equations of three-
dimensional motion in Lagrangian coordinates, which are
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Φ is the potential of the gravitational field,
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r = r(m, θ̂, ϕ̂, t), θ = θ(m, θ̂, ϕ̂, t), ϕ = ϕ(m, θ̂, ϕ̂, t), p = p(m, θ̂, ϕ̂, t), ρ = ρ(m, θ̂, ϕ̂, t)
are unknown functions, m = 4π

3
ρ0r̂

3, ρ0 = const, m, θ̂, ϕ̂, are Lagrangian coordinates,

f(m, θ̂, ϕ̂) is the function related to the distribution of entropy by Lagrangian coordinates.

3 Problem statement. Let a homogeneous gas tree-axis ellipsoid in its own grav-
itational field rotate solid about the axis z with ω angular velocity. Suppose that at a
moment in time an explosion occurs with the release of E energy. In this case, a divergent
shock wave forms in the center. It is necessary to determine the law and the velocity of
the medium behind the shock wave, as well as the thermodynamic characteristics of the
medium.

The conditions on the discontinuity surface of the first kind, permitted with respect
to the parameters of the gas behind the shock wave, noted with index 2, have the form:
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4 Exact solution of a problem on rotation of a gravitating homogeneous
gas ellipsoid of Jacobi (pre-shock wave solution). As initial data, consider the
exact solution to the problem of stationary solid rotation of a homogeneous three-axis
Jacobi gas ellipsoid.

In spherical coordinates, the exact solution (1) gives the distribution of velocity, pres-
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sure and gravitational potential within a three-axis homogeneous ellipsoid of Jacobi [9]

ur = uθ = 0, uϕ = r sin θ dϕ
dt

, dϕ
dt
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a, b, c is the half-axis of the three-axis ellipsoid of rotation, wherein the angular speed of
rotation satisfies the relation (in the theory of ellipsoidal figures of equilibrium is called
the Jacobi formula, [8])
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5 Asymptotic solution behind the shock wave. A detailed qualitative anal-
ysis of the equations of motion (1) and boundary conditions (2) shows that the solution
in the vicinity beyond the shock wave can be sought in the form of a singular asymptotic
decomposition by a small parameter

r(m, θ̂, ϕ̂, τ) = R0(τ) + εH(m, θ̂, ϕ̂, τ) + O(ε2),
R(θ, ϕ, τ) = R0(τ) + εR1(θ, ϕ, τ) + O(ε2),

M(θ, ϕ, τ) = M0(τ) + εM1(θ, ϕ, τ) + O(ε2),

θ(m, θ̂, ϕ̂, τ) = θ̂ + εθ1(m, θ̂, ϕ̂, τ) + O(ε2),

ϕ(m, θ̂, ϕ̂, τ) = ϕ̂ +
√

εϕ1(m, θ̂, ϕ̂, τ) + O(ε3/2),

p(m, θ̂, ϕ̂, τ) = p0(m,τ)
ε

+ p1(m, θ̂, ϕ̂, τ) + O(ε),

ρ(m, θ̂, ϕ̂, τ) = p0(m,θ̂,ϕ̂,τ)
ε

+ ρ1(m, θ̂, ϕ̂, τ) + O(ε),

(5)

where ε is a small parameter ε = γ−1
γ+1

, τ = t√
ε
, E = E0

ε2 , E0 = O(1).

Substituting the asymptotic decomposition (5) into the system of equations (1) and
boundary conditions (2), given also the integral energy equation, for zero (main approxi-
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mation) approximations of the unknown functions, we obtain
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6 Conclusions. Thus, using the previously proposed asymptotic method of a
small parameter (thin shock layer) for a gravitational gas, we found the main approx-
imations for the law of motion and thermodynamic characteristics of the medium behind
the shock wave in the problem of a central explosion in a stationary solid-state rotating
with a constant angular velocity of a three-axis Jacobi ellipsoid.
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