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LEBESGUE’S TEST FOR GENERAL DIRICHLET’S INTEGRALS
Nika Areshidze

Abstract. It is a well-known Lebesgue ([1], [4]) test for trigonometric Fourier series. Taberski
([2],[3]) considered real-valued Lebesgue locally integrable functions f, such that
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for every fixed ¢ > 0. For this class of functions, he defined generalized Dirichlet’s integrals.
Besides, Taberski ([2], [3]) investigated problems of convergence and (C,1)-summability of these
integrals. In this paper the analogue of the Lebesgue test for the generalized Dirichlet’s integrals
is proved.

Keywords and phrases: Lebesgue’s test, general Dirichlet’s integrals, convergence.

AMS subject classification (2010): 42A20, 42A38.

One of the most important tests for the convergence of Fourier series are those of
Dini, Dini-Lipschitz, and Dirichlet-Jordan, each of which is based on a different idea. In
1905 Lebesgue proved the theorem which is known as Lebesgue’s test and which is more
general than the others. In 1973 Taberski [3] considered class E of real-valued, Lebesgue
locally integrable functions. Taberski ([2], [3]) investigated problems of convergence and
(C,1)-summability of these integrals.

Definition. Let E be the class of all real-valued, Lebesgue locally integrable functions f
such that
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for every fixed ¢ > 0.

Remark 1. If real-valued, Lebesgue locally integrable function f is periodic (with a least
positive period m) then (1) is fulfilled. Indeed, there exists & > 0, such that ¢ < k- m.

Then we have
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when 7" — +oo. M is the integral from |f| on the interval [T;T 4+ m]. Similarly we show
that the second condition in (1) is fulfilled.
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Let for any given function f € E and a positive number [

1
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where = € (—o0,+00), n=0,1,2....

Let
(2n+1)7t

Sin 2l

0x(t) = (f(z +1) + flz —t) = 2f(x)), D,(t) =

2sin ¢ 2l

Taberski [3] showed that if f € E then for every fixed point of [a; b]

S )= @) = 7 [ oODhd +o(1). 1—-+ox, )

(2) is uniformly in x € [a;b] (—00 < a <b< 400),n=0,1,2,..., if f € E is bounded
on [a;b]. It is easy to see that
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where x;(t) = £¢,(t) cot 2. We have
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Let for = € [a; b]
h
= [ 6.0l dt = o). n—toc. (5)

Using (3)-(5), we have
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If f € E is bounded on [a;b] and (5) is satisfied uniformly in x € [a;b] then (6) is
fulfilled uniformly in x € [a; b].

Theorem. Suppose f € E and for xy € |a; b

h
O(h) = /0 |z (1)|dt = o(h), when h — 0, h— +oo, (7)

and

[
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n

/l |¢:c0(t) _ ¢$0(t + 77)|

Then S! (x; f) converges to f(xg), whenn — 0, n — 400, [ — +oo. Convergence is
uniform on [a;b] if f € E is bounded and conditions (7) and (8) are satisfied uniformly.

Proof. We apply (6). The first term of (6) is o(1) by hypothesis. The third term there is
' ®(2n) = o(1) when n — 0. Integration by parts of the second term gives
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Obviously, K1 = o(1), K = o(1),when 1 —0, n— +oo, [ — +oo.
From (7) we have ®(t) = o(t), when t — 0. Therefore, for Ve > 0 there exists § > 0
such that, when 0 < t <4, then ®(t) < e-t. So we have
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Since n — 0, when n,l — +o00, therefore, there exists N such that for n,l > N

g3
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Whence
KS S 357

if n and [ are large enough. Since ¢ is arbitrary, we get K3 = o(1), when n,l — +oo.
Besides, from (7) we have ®(t) = o(t), when ¢ — +o00. Therefore, for Ve > 0 there exists
s > 1 such that when ¢ > s then ®(t) < e -t. Whence

S P(t Lot
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when n and [ are large enough. Therefore, K, = o(1) when n,l — +o0. The first part of
the theorem is proved. The second part of the theorem will be similarly proved. O

Remark 2. In particular, if a function f € FE is continuous on (a’;b'), then the first
condition of (7) is satisfied uniformly over any closed interval [a;b] (' < a <b < V).
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