Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 35, 2021

THE CONSISTENT ESTIMATORS OF CHARLIER STATISTICAL STRUCTURES

Zurab Zerakidze

Abstract. The Charlier statistical structure is determined and the necessary and sufficient conditions for the existence of consistent estimators of the parameters are given.

Keywords and phrases: Consistent estimators, orthogonal statustical structure, separable statustical structure.

AMS subject classification (2010): 62H05, 62H12.

1 Introduction. Let (E, S) be a measurable space with a given family of probability measures $\{\mu_i, i \in I\}$. The following definitions are taken from [1]-[3].

Definition 1. An object $\{E, S, \mu_i, i \in I\}$ is called a statistical structure.

Definition 2. A statistical structure $\{E, S, \mu_i, i \in I\}$ is called orthogonal (singular) if $\{\mu_i, i \in I\}$ consists of pairwise singular measures (i.e. $\mu_i \perp \mu_j, \forall i \neq j$).

Definition 3. A statistical structure $\{E, S, \mu_i, i \in I\}$ is called weakly separable if there exists a family of S-measurable sets $\{X_i, i \in I\}$ such that

$$\mu_i(X_j) = \begin{cases} 1, & if \ i = j; \\ 0, & if \ i \neq j \end{cases} \quad (i, j \in I).$$

Definition 4. A statistical structure $\{E, S, \mu_i, i \in I\}$ is called separable if there exists a family of S-measurable sets $\{X_i, i \in I\}$ such that

1)
$$\mu_i(X_j) = \begin{cases} 1, & if \ i = j; \\ 0, & if \ i \neq j \end{cases}$$
 $(i, j \in I);$

2) $\forall i, j \in I : card(X_i \cap X_j) < c, if i \neq j,$

where c denotes the power of continuum.

Definition 5. A statistical structure $\{E, S, \mu_i, i \in I\}$ is called strongly separable if there exists a disjoint family of S-measurable sets $\{X_i, i \in I\}$ such that $\bigcup_{i \in I} X_i = E$ and $\mu_i(X_i) = 1, \forall i \in I.$

Let B(I) be a σ -algebra of subsets of I which contains all finite subsets.

Definition 6. We will say that the statistical structure $\{E, S, \mu_i, i \in I\}$ admits a consistent estimator of parameter $i \in I$ if there exists at least one measurable mapping $\delta : (E, S) \longrightarrow (I, B(I))$, such that

$$\mu_i(\{x:\delta(x)=i\})=1, \ \forall i \in I.$$

Let M^{σ} be a real linear space of all alternating finite measures on S.

Definition 7. A linear subset $M_B \subset M^{\sigma}$ is called a Banach space of measures if:

1) a norm on M_B can be defined so that M_B will be a Banach space with respect to this norm, and for any orthogonal measures $\mu, \nu \in M_B$ and real number $\lambda \neq 0$ the inequality $||\mu + \lambda \nu|| \geq ||\mu||$ is fulfilled;

2) if $\mu \in M_B$, $|f(x)| \le 1$, then $\nu_f(A) = \int_A f(x)\mu(dx) \in M_B$ and $||\nu_f|| \le ||\nu||$;

3) if $\nu_n \in M_B$, $\nu_n > 0$, $\nu_n(E) < \infty$, n = 1, 2, ... and $\nu_n \downarrow 0$, then for any linear functional $l^* \in M_B^*$: $\lim_{n \to \infty} l^*(\nu_n) = 0$, where M_B^* is conjugate to the Banach space M_B .

Definition 8. Let I be some set of indexes and let M_{B_i} be a Banach space for all $i \in I$. We set

$$M_B = \{\{X_i\}_{i \in I} : X_i \in M_{B_i}, \sum_{i \in I} ||X_i||_{M_{B_i}} < \infty\}.$$

Then the M_B with the norm $||\{X_i\}_{i \in I}|| = \sum_{i \in I} ||X_i||_{M_{B_i}}$ is a Banach space. It is called the direct sum of Banach spaces M_{B_i} and is denoted as $M_B = \bigoplus_{i \in I} M_{B_i}$.

The following theorem is also proved in the paper [3].

Theorem 1. If M_B is a Banach space of measures, then in M_B there exists a family of pairwise orthogonal probability measures $M = \{\mu_i, i \in I\}$ such that $M_B = \bigoplus_{i \in I} M_{B_i}$, where M_{B_i} is the Banach space of elements ν such that:

$$\nu(B) = \int_B f(x)\mu_i(dx), \quad ||\nu||_{M_{B_i}} := \int_E |f(x)|\mu_i(dx) < \infty.$$

2 The consistent estimators of Charlier statistical structures. Let μ_{Ch} be the probability Charlier measure given on R by the formula

$$\mu_{Ch}(A) = \int_A f_{Ch}(x) dx, \ A \in B(R),$$

where $f_{Ch}(x)$ is the Charlier spectral densities. Let $\{\mu_i, i \in I\}$ is a corresponding Charlier probability measures.

Definition 9. The statistical structure $\{E, S, \mu_i, i \in I\}$, where μ_i are the Charlier probability measures, is called the Charlier statistical structure.

Let $\{E, S, \mu_i, i \in I\}$ be the Charlier statistical structure. Consider S-measurable functions $g_i(x)$ $(i \in I)$ such that

$$\sum_{i \in I} \int_E |g_i|(x)\mu_i(dx) < \infty.$$

Let M_B be the set of measures defined by formula

$$\nu(B) = \sum_{i \in I_1} \int_B g_i(x) \mu_i(dx) < \infty,$$

where $I_1 \subset I$ is a countable subset of I and

$$\sum_{i\in I_1}\int_E |g_i|(x)\mu_i(dx) < \infty.$$

If we define the norm in M_B by the formula $||\nu|| = \sum_{i \in I} \int_E |g_i|(x)\mu_i(dx)$, then M_B is a Banach space of measures and $M_B = \bigoplus_{i \in I} M_{B_i}$, where M_{B_i} is the Banach space of elements ν such that (see [3]):

$$\nu(B) = \int_B g_i(x)\mu_i(dx), \quad ||\nu||_{M_{B_i}} := \int_E |g_i(x)|\mu_i(dx) < \infty.$$

Let $M_B = \bigoplus_{i \in I} M_{B_i}$, $I = \{i_1, i_2, ...\}$, be the Banach space of measures, let E be a complete separable metric space, and let S be the σ -algebra on E. Denote by $F = F(M_B)$ the set of real functions f for which integral $\int_E f(x)\mu_i(dx)$ is defined $\forall \mu_i \in M_B \ (i \in I)$.

Theorem 2. In order that the Charlier orthogonal statistical structure $\{E, S, \mu_i, i \in I\}$ admit consistent estimators of parameters it is necessary and sufficient that the correspondence $f \in l_f$ defined by the equality

$$\int_{E} f(x)\mu_i(dx) = l_f(\mu_i), \ \forall \mu_i \in M_B$$

was one-to-one (here l_f is a linear continuous functional on M_B , $f \in F(M_B)$).

Proof. Necessity. The existence of a consistent estimator $\delta : (E, S) \longrightarrow (I, B(I))$ of the parameter $i \in I$ implies that $\forall i \in I : \mu_i(\{x : \delta(x) = i\}) = 1$. Setting $X_i = \{x : \delta(x) = i\}$ for $i \in N$ we get: 1) $\mu_i(X_i) = 1$; $X_i \cap X_j = \emptyset$, $i \neq j$. Therefore, the statistical structure $\{E, S, \mu_i, i \in I\}$ is strongly separable, so there exist S-measurable sets $\{X_i\}i \in I$ such that

$$\mu_i(X_j) = \begin{cases} 1, & \text{if } i = j; \\ 0, & \text{if } i \neq j. \end{cases}$$

We associate with the function $I_{x_i} \in F(M_B)$ a continuous linear functional by the formula

$$\int_E I_{x_i}(x)\mu_i(dx) = l_{I_{x_i}}(\mu_i) = ||\mu_i||_{M_{B_i}}.$$

Let us put the linear continuous functional $I_{\tilde{f}_1}$ in correspondence with the function $\tilde{f}_1(x) = f_1(x)I_{X_i}(x)$. Then for $\mu_{i_1} \in M_B(\mu_i)$ we have

$$\int_E \widetilde{f}_1(x)\mu_{i_1}(dx) = \int_E f_1(x)I_{X_i}(x)\mu_{i_1}(dx)$$

$$= \int_{E} f(x)f_{1}(x)I_{X_{i}}(x)\mu_{i}(x)dx = l_{\tilde{f}_{1}}(\mu_{i_{1}}) = ||\mu_{i_{1}}||_{M_{B_{i}}}.$$

If we put now the linear continuous functional I_f in correspondence with the function $f(x) = \sum_{i \in N} g_i(x) I_{X_i}(x) \in F(M_B)$ then we obtain

$$\int_{E} f(x)\mu(dx) = ||\mu|| = \sum_{i \in N} ||\mu_i||_{M_{B_i}},$$

where $\mu(B) = \sum_{i \in N} \int_B g_i(x) \mu_i(dx), B \in S.$

Sufficiency. For $f \in F(M_B)$ we define linear continuous functional l_f by the equality $\int_E f(x)\mu(dx) = l_f(\mu)$. Denote by I_f the countable subset in I for which $\int_E f(x)\mu_i(dx) = 0$ for $i \notin I_f$. The corresponding functional on M_{B_i} denote by l_{f_i} . Then for $\mu_{i_1}, \mu_{i_2} \in M_{B_i}$ we have

$$\int_{E} f_{i_1}(x)\mu_{i_2}(dx) = l_{f_1}(\mu_{i_2}) = \int_{E} f_1(x)f_2(x)\mu_{i_1}(dx) = \int_{E} f_{i_1}(x)f_2(x)\mu_{i_1}(dx).$$

Therefore $f_{i_1} = f_1$ a. e. with respect to the measure μ_{i_1} .

Let $f_i > 0$ a. e. with respect to the measure μ_i and $\int_E f_i(x)\mu_i(dx) < \infty$, then $\int_E f_i(x)\mu_j(dx) = l_{f_i}(\mu_j) = 0, \forall j \neq i$. Denote by $C_i = \{x : f_i(x) > 0\}$, then $\int_E f_i(x)\mu_j(dx) = 0, \forall j \neq i$. Hence, it follows that $\mu_j(C_i) = 0, \forall j \neq i$. On the other hand, $\mu_j(E \setminus C_i) = 0$. Therefore, the statistical structure $\{E, S, \mu_i, i \in I\}$ is weakly separable. Hence, there exists the family of S-measurable sets $X_i, i \in I$ such that

$$\mu_i(X_j) = \begin{cases} 1, & \text{if } i = j; \\ 0, & \text{if } i \neq j. \end{cases}$$

Consider now the sets $\overline{X}_i = X_i \setminus (X_i \cap (\bigcup_{k \neq i} X_k)), i \in I$. It is obvious that these sets are S-measurable disjoint sets and $\mu_i(\overline{X}_i) = 1, i \in I$. Let us now define the mapping $\delta : (E, S) \longrightarrow (I, B(I))$ in the following way: $\delta(\overline{X}_i) = i, i \in I$. Hence, δ is the consistent estimator for parameter $i \in I$.

REFERENCES

- 1. ZERAKIDZE, Z. On consistent estimators for families of probability measures. 5-th Japan-USSR Symposium on Probability Theory and Mathematical Statistics, Kyoto University, (1986), 62-63.
- ZERAKIDZE, Z., PURTUKHIA, O. The weakly consistent, strongly consistent and consistent estimates of the parameters. *Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Mathematics*, **31** (2017), 151-154.
- 3. ZERAKIDZE, Z. Banach space of measures. Proceedings of the Fifth Vilnius Conference in Probability Theory and Mathematical Statistics, VSP/Mokslas 2 (1991), 609-616.

Received 27.05.2021; revised 24.07.2021; accepted 29.09.2021.

Author(s) address(es):

Zurab Zerakidze Gori State Teaching University Chavchavadze Ave. 53, 1400 Gori, Georgia E-mail: zura.zerakidze@mail.ru