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Abstract. The Charlier statistical structure is determined and the necessary and sufficient
conditions for the existence of consistent estimators of the parameters are given.
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1 Introduction. Let (E, S) be a measurable space with a given family of proba-
bility measures {µi, i ∈ I}. The following definitions are taken from [1]-[3].

Definition 1. An object {E, S, µi, i ∈ I} is called a statistical structure.

Definition 2. A statistical structure {E, S, µi, i ∈ I} is called orthogonal (singular) if
{µi, i ∈ I} consists of pairwise singular measures (i.e. µi ⊥ µj, ∀i 6= j).

Definition 3. A statistical structure {E, S, µi, i ∈ I} is called weakly separable if there
exists a family of S-measurable sets {Xi, i ∈ I} such that

µi(Xj) =

{
1, if i = j;

0, if i 6= j
(i, j ∈ I).

Definition 4. A statistical structure {E, S, µi, i ∈ I} is called separable if there exists a
family of S-measurable sets {Xi, i ∈ I} such that

1) µi(Xj) =

{
1, if i = j;

0, if i 6= j
(i, j ∈ I);

2) ∀i, j ∈ I : card(Xi ∩Xj) < c, if i 6= j,

where c denotes the power of continuum.

Definition 5. A statistical structure {E, S, µi, i ∈ I} is called strongly separable if there
exists a disjoint family of S-measurable sets {Xi, i ∈ I} such that ∪i∈IXi = E and
µi(Xi) = 1, ∀i ∈ I.

Let B(I) be a σ-algebra of subsets of I which contains all finite subsets.
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Definition 6. We will say that the statistical structure {E, S, µi, i ∈ I} admits a con-
sistent estimator of parameter i ∈ I if there exists at least one measurable mapping
δ : (E, S) −→ (I, B(I)), such that

µi({x : δ(x) = i}) = 1, ∀ i ∈ I.

Let Mσ be a real linear space of all alternating finite measures on S.

Definition 7. A linear subset MB ⊂ Mσ is called a Banach space of measures if:
1) a norm on MB can be defined so that MB will be a Banach space with respect

to this norm, and for any orthogonal measures µ, ν ∈ MB and real number λ 6= 0 the
inequality ||µ + λν|| ≥ ||µ|| is fulfilled;

2) if µ ∈ MB, |f(x)| ≤ 1, then νf (A) =
∫

A
f(x)µ(dx) ∈ MB and ||νf || ≤ ||ν||;

3) if νn ∈ MB, νn > 0, νn(E) < ∞, n = 1, 2, ... and νn ↓ 0, then for any linear
functional l∗ ∈ M∗

B: lim
n−→∞

l∗(νn) = 0, where M∗
B is conjugate to the Banach space MB.

Definition 8. Let I be some set of indexes and let MBi
be a Banach space for all i ∈ I.

We set
MB = {{Xi}i∈I : Xi ∈ MBi

,
∑
i∈I

||Xi||MBi
< ∞}.

Then the MB with the norm ||{Xi}i∈I || =
∑

i∈I ||Xi||MBi
is a Banach space. It is

called the direct sum of Banach spaces MBi
and is denoted as MB = ⊕i∈IMBi

.
The following theorem is also proved in the paper [3].

Theorem 1. If MB is a Banach space of measures, then in MB there exists a family
of pairwise orthogonal probability measures M = {µi, i ∈ I} such that MB = ⊕i∈IMBi

,
where MBi

is the Banach space of elements ν such that:

ν(B) =

∫
B

f(x)µi(dx), ||ν||MBi
:=

∫
E

|f(x)|µi(dx) < ∞.

2 The consistent estimators of Charlier statistical structures. Let µCh be
the probability Charlier measure given on R by the formula

µCh(A) =

∫
A

fCh(x)dx, A ∈ B(R),

where fCh(x) is the Charlier spectral densities. Let {µi, i ∈ I} is a corresponding Charlier
probability measures.

Definition 9. The statistical structure {E, S, µi, i ∈ I}, where µi are the Charlier prob-
ability measures, is called the Charlier statistical structure.

Let {E, S, µi, i ∈ I} be the Charlier statistical structure. Consider S-measurable
functions gi(x) (i ∈ I) such that∑

i∈I

∫
E

|gi|(x)µi(dx) < ∞.
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Let MB be the set of measures defined by formula

ν(B) =
∑
i∈I1

∫
B

gi(x)µi(dx) < ∞,

where I1 ⊂ I is a countable subset of I and∑
i∈I1

∫
E

|gi|(x)µi(dx) < ∞.

If we define the norm in MB by the formula ||ν|| =
∑

i∈I

∫
E
|gi|(x)µi(dx), then MB is a

Banach space of measures and MB = ⊕i∈IMBi
, where MBi

is the Banach space of elements
ν such that (see [3]):

ν(B) =

∫
B

gi(x)µi(dx), ||ν||MBi
:=

∫
E

|gi(x)|µi(dx) < ∞.

Let MB = ⊕i∈IMBi
, I = {i1, i2, ...}, be the Banach space of measures, let E be a

complete separable metric space, and let S be the σ-algebra on E. Denote by F = F (MB)
the set of real functions f for which integral

∫
E

f(x)µi(dx) is defined ∀µi ∈ MB (i ∈ I).

Theorem 2. In order that the Charlier orthogonal statistical structure {E, S, µi, i ∈ I}
admit consistent estimators of parameters it is necessary and sufficient that the corre-
spondence f ∈ lf defined by the equality∫

E

f(x)µi(dx) = lf (µi), ∀µi ∈ MB

was one-to-one (here lf is a linear continuous functional on MB, f ∈ F (MB)).

Proof. Necessity. The existence of a consistent estimator δ : (E, S) −→ (I, B(I)) of the
parameter i ∈ I implies that ∀i ∈ I : µi({x : δ(x) = i}) = 1. Setting Xi = {x : δ(x) = i}
for i ∈ N we get: 1) µi(Xi) = 1; Xi ∩Xj = ∅, i 6= j. Therefore, the statistical structure
{E, S, µi, i ∈ I} is strongly separable, so there exist S-measurable sets {Xi}i ∈ I such
that

µi(Xj) =

{
1, if i = j;

0, if i 6= j.

We associate with the function Ixi
∈ F (MB) a continuous linear functional by the

formula ∫
E

Ixi
(x)µi(dx) = lIxi

(µi) = ||µi||MBi
.

Let us put the linear continuous functional If̃1
in correspondence with the function

f̃1(x) = f1(x)IXi
(x). Then for µi1 ∈ MB(µi) we have∫

E

f̃1(x)µi1(dx) =

∫
E

f1(x)IXi
(x)µi1(dx)
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=

∫
E

f(x)f1(x)IXi
(x)µi(x)dx = lf̃1

(µi1) = ||µi1||MBi
.

If we put now the linear continuous functional If in correspondence with the function
f(x) =

∑
i∈N gi(x)IXi

(x) ∈ F (MB) then we obtain∫
E

f(x)µ(dx) = ||µ|| =
∑
i∈N

||µi||MBi
,

where µ(B) =
∑

i∈N

∫
B

gi(x)µi(dx), B ∈ S.

Sufficiency. For f ∈ F (MB) we define linear continuous functional lf by the equality∫
E

f(x)µ(dx) = lf (µ). Denote by If the countable subset in I for which
∫

E
f(x)µi(dx) = 0

for i /∈ If . The corresponding functional on MBi
denote by lfi

. Then for µi1 , µi2 ∈ MBi

we have∫
E

fi1(x)µi2(dx) = lf1(µi2) =

∫
E

f1(x)f2(x)µi1(dx) =

∫
E

fi1(x)f2(x)µi1(dx).

Therefore fi1 = f1 a. e. with respect to the measure µi1 .
Let fi > 0 a. e. with respect to the measure µi and

∫
E

fi(x)µi(dx) < ∞, then∫
E

fi(x)µj(dx) = lfi
(µj) = 0, ∀j 6= i. Denote by Ci = {x : fi(x) > 0}, then

∫
E

fi(x)µj(dx) =
0, ∀j 6= i. Hence, it follows that µj(Ci) = 0, ∀j 6= i. On the other hand, µj(E \ Ci) = 0.
Therefore, the statistical structure {E, S, µi, i ∈ I} is weakly separable. Hence, there
exists the family of S-measurable sets Xi, i ∈ I such that

µi(Xj) =

{
1, if i = j;

0, if i 6= j.

Consider now the sets X i = Xi \ (Xi ∩ (∪k 6=iXk)), i ∈ I. It is obvious that these sets
are S-measurable disjoint sets and µi(X i) = 1, i ∈ I. Let us now define the mapping
δ : (E, S) −→ (I, B(I)) in the following way: δ(X i) = i, i ∈ I. Hence, δ is the consistent
estimator for parameter i ∈ I.

R E F E R E N C E S

1. Zerakidze, Z. On consistent estimators for families of probability measures. 5-th Japan-USSR Sym-
posium on Probability Theory and Mathematical Statistics, Kyoto University, (1986), 62-63.

2. Zerakidze, Z., Purtukhia, O. The weakly consistent, strongly consistent and consistent estimates
of the parameters. Reports of Enlarged Session of the Seminar of I. Vekua Institute of Applied Math-
ematics, 31 (2017), 151-154.

3. Zerakidze, Z. Banach space of measures. Proceedings of the Fifth Vilnius Conference in Probability
Theory and Mathematical Statistics, VSP/Mokslas 2 (1991), 609-616.

Received 27.05.2021; revised 24.07.2021; accepted 29.09.2021.

Author(s) address(es):

Zurab Zerakidze
Gori State Teaching University
Chavchavadze Ave. 53, 1400 Gori, Georgia
E-mail: zura.zerakidze@mail.ru


