Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 35, 2021

ON FACTORIZATION OF MONOIDS

Tamar Mesablishvili

Abstract. We prove that there is a one-to-one correspondence between the set of factorizations of a monoid and the set of certain pairs consisting of a left and a right congruence on the monoid.

Keywords and phrases: Monoid, factorization, congruence.

AMS subject classification (2010): 18C05, 18C15, 18D35, 20M50.

We use [1] as a reference for the theory of monoids and their actions

1 Factorization of monoids. A monoid is a triple (A, m, 1) consisting of a set A, an associative binary operation m, and a two-sided unit element $1 \in A$. We will often follow the common practice of writing A instead of $(A, m_A, 1_A)$. A submonoid of a monoid A is a subset B of A that is closed under the monoid operation and contains the identity element 1 of A. If X is a submonoid of A, ι_X denotes the canonical inclusion $X \to A$.

A monoid A is said to be *factorizable* if it contains two submonoids A_1 and A_2 such that the multiplication map $A_1 \times A_2 \to A$, $(a_1, a_2) \longmapsto a_1 a_2$ is bijective. The couple (A_1, A_2) is called a *factorization* of A. We write FAC(A) the set of factorizations of A.

2 Monoid actions. Let A = (A, m, 1) be a monoid. A *left A-set* is a pair (X, ρ_X) consisting of a set X and a map $\rho_X : A \times X \to X$ written as $\rho_X(a, x) = ax$ and called the *action* of A on X, such that

$$a(a'x) = (aa')x, \quad \mathbf{1}x = x \text{ for all } a, a' \in A, x \in X.$$

The monoid A is said to act on X (from the left). The set X is called a *(left)* A-set. A morphism from a left A-set X to a left A-set Y is a map $f: X \to Y$ such that

$$f(ax) = af(x)$$
 for all $a \in A, x \in X$.

Morphisms of left A-sets are sometimes called A-morphisms. Right A-sets and their morphisms are defined symmetrically.

3 Congruences on an action. Let A be a monoid and let X be a left A-set. A congruence on a left A-set X is an equivalence relation $\wp \subseteq X \times X$ on X such that $(x, x') \in \wp$ implies $(ax, ax') \in \wp$ for all $x, x' \in X$ and $a \in A$. (Similarly we can define a right A-congruence on a right A-set Y.) The \wp -equivalence class of an element $x \in X$ is denoted by $[x]_{\wp}$. The set $X/\wp = \{[x]_{\wp} : x \in X\}$ of equivalence classes is a left A-set under the left A-action defined by $a \cdot [x]_{\wp} = [ax]_{\wp}$ and the canonical map $\pi^{\wp} : X \to X/\wp$ that sends every element x to its equivalence class $[x]_{\wp}$ is a morphism of left A-sets. π^{\wp} called the *quotient map associated to the congruence* \wp . The set of all congruences on a left A-set X is denoted by $\mathcal{C}_A(X)$.

A left (resp. right) congruence on the monoid A is a congruence on the left (resp. right) A-set (A, m). A congruence on A is an equivalence relation on A that is both a right and a left congruence. We denote the set of all congruences on A by Con(A).

Congruences typically arise as kernels of morphisms: For any morphism $f: X \to Y$ of left (resp. right) A-sets, the subset

$$\mathsf{K}[f] = \{(x_1, x_2) \in X \times X : f(x_1) = f(x_2)\}$$

of the set $X \times X$ is a congruence on the left (resp. right) A-set X and is called the *kernel* congruence of f. In fact every congruence is the kernel congruence of some A-morphism, namely the quotient map associated to the congruence. Explicitly, if \wp is a congruence on a (left or right) A-set X, then $\mathsf{K}[\pi^{\wp}] = \wp$.

Given a left A-set X, there are always two special congruences on X: The trivial (or, diagonal) congruence Δ_X (which identifies elements with themselves only) and the full congruence ∇_X (which identifies together all elements). Thus,

$$\triangle_X = \{(x, x) : x \in X\}$$
 and $\nabla_X = X \times X$.

In the special case of the left (resp. right) A-set (A, m), we write $\mathcal{C}^{l}(A)$ (resp. $\mathcal{C}^{r}(A)$) for the corresponding set of left (resp. right) congruences on it. If we consider the natural order in $\mathcal{C}_{A}(X)$ given by inclusion, then ∇_{X} is the greatest element of $\mathcal{C}_{A}(X)$, while Δ_{X} is the least element of $\mathcal{C}_{A}(X)$.

4 Quotient of an action. For a left A-set X, we write $\operatorname{Quot}(X)$ for the class of all surjections of left A-sets with domain X. Recall that surjections $f_Y : X \to Y$ of left A-sets are pre-ordered by setting $f_Y \leq f_{Y'}$ if $f_Y = kf_{Y'}$ for some $k : Y' \to Y$; two such surjections are equivalent if $f_Y \leq f_{Y'}$ and $f_{Y'} \leq f_Y$ (i.e., if there exists a bijection $l: Y \to Y'$ of left A-sets with $f_Y = lf_{Y'}$), and the equivalence classes are called a quotient of the left A-set X. For any surjection $f_Y : X \to Y$ of left A-sets, the corresponding quotient will be denoted by $[(Y, f_Y)]$. We will say that a left A-set Y is a quotient of a left A-set X if there is a surjection $X \to Y$ of left A-sets. We let $\operatorname{Quot}(X)$ denote the class of all quotients of X.

Lemma 1. For any monoid A, the passage from $(X, f_X) \in \text{Quot}(A)$ to $\mathsf{K}[f_X]$ establishes a bijection $\mathsf{Quot}(A) \simeq \mathcal{C}^l(A)$. Its inverse takes $\wp \in \mathcal{C}^l(A)$ to $(A/\wp, \pi^{\wp})$.

5 Transversals of congruences. Let \wp be a congruence on a left A-set X. A transversal of \wp is a set $T \subseteq X$ such that T consists of exactly one representative of every equivalence class of \wp . In other words, $T \subseteq X$ is a transversal of \wp if $\wp \cap (X \times X) = \bigtriangleup_Y$ and $\bigcup_{x \in X} [x]_{\wp} = X$. This is equivalent to saying that there exists a set-theoretical section of the canonical map $\pi^{\wp} : A \to A/\wp$ (i.e. a set-theoretical map $j : A/\wp \to A$ with

 $\pi^{\wp} j = \mathsf{Id}_{A/\wp}$ such that its image in A is T. We write $\mathcal{C}_A(X)|_T$ for the subset of $\mathcal{C}_A(X)$ consisting of those congruences $\wp \in \mathcal{C}_A(X)$ for which T is transversal of \wp . Thus,

$$\mathcal{C}_A(X)|_T = \{ \wp \in \mathcal{C}_A(X) : T \text{ is a transversal of } \wp \}.$$

6 Descent cohomologies. Given a morphism $\iota : B \to A$ of monoids, we write $\mathcal{Z}^{l}(\iota)$ for the set of maps $q : A \to B$ such that

(ZL1)
$$q\iota = \mathsf{Id}_B;$$

(ZL2) $q(\iota(b)a) = bq(a)$, for all $b \in B$ and all $a \in A$, and

(ZL3) $q(aa') = q(a \cdot \iota q(a'))$, for all $a, a' \in A$.

The elements of set $\mathcal{Z}^{l}(\iota)$ are called 1-dimensional descent cocycles (see [2]).

Lemma 2. Let $\iota : B \to A$ be a homomorphism of monoids. Then for any $q \in \mathcal{Z}^{l}(\iota)$, $\mathsf{K}[q] \in \mathcal{C}^{l}(A)|_{\iota(B)}$.

Given an injective homomorphism of monoids $\iota : B \to A$ and $\wp \in \mathcal{C}^{l}(A)|_{\iota(B)}$, write q_{\wp} for the map $A \to B$ sending $a \in A$ to the unique element $b \in B$ with $[a]_{\wp} = [\iota(b)]_{\wp}$ (which exists because $\iota(B)$ is a transversal of \wp). Observe that $q_{\wp} \in \mathcal{Z}^{l}(\iota)$.

Based on the lemmas above, we have the following result.

Theorem 1. Let $\iota: B \to A$ be an injective homomorphism of monoids. Then the map

$$\mathcal{Z}^{l}(\iota) \to \mathcal{C}^{l}(A)|_{\iota(B)},$$
$$(q: A \to B) \longmapsto \mathsf{K}[q]$$

is a bijection. Its inverse is the map

$$\mathcal{C}^{l}(A)|_{\iota(B)} \to \mathcal{Z}^{l}(\iota),$$
$$\wp \longmapsto q_{\wp}.$$

By using Theorem 1 we will prove our main result:

Theorem 2. For any monoid A, the assignment

$$(\alpha, \beta) \longmapsto ([\mathbf{1}_A]_{\beta} \xrightarrow{\iota_{[\mathbf{1}_A]_{\beta}}} A \xleftarrow{\iota_{[\mathbf{1}_A]_{\alpha}}} [\mathbf{1}_A]_{\alpha})$$

yields a bijection between the set of those pairs $(\alpha, \beta) \in \mathcal{C}^{l}(A) \times \mathcal{C}^{r}(A)$ such that

- 1. $\alpha \cap \beta = \Delta_A$;
- 2. $[\mathbf{1}_A]_{\beta}$ is a transversal of α ,
- 3. $[\mathbf{1}_A]_{\alpha}$ is a transversal of β

and the set FAC(A) of factorizations of A.

REFERENCES

- 1. KILP, M., KNAUER, U., MIKHALEV, A.V. Monoids, acts and categories. A handbook for students and researchers. *De Gruyter Expositions in Mathematics*, **29**. Walter de Gruyter & Co., Berlin, 2000.
- MESABLISHVILI, B. On descent cohomology. Transactions of A. Razmadze Mathematical Institute 173 (2019), 137-155.

Received 20.05.2021; revised 30.06.2021; accepted 01.09.2021.

Author(s) address(es):

Tamar Mesablishvili I. Javakhishvili Tbilisi State University University str. 13, 0186 Tbilisi, Georgia E-mail: tammoi14@gmail.com, tamar.mesablishvili392@ens.tsu.edu.ge