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ON NON-CLASSICAL SOLUTIONS FOR SOME NON-LOCAL
BITSADZE-SAMARSKI BOUNDARY VALUE PROBLEM
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Abstract. In the paper, based on the variational approach, the definition of a classical solution

is generalized for the simplest non-local boundary problem posed in a rectangular area.
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Let us consider the following non-local boundary value problem

−4 v(x, y) + λv(x, y) = f(x, y), (x, y) ∈ G,
v(x, y)|Γ = 0,

v(x, y)|Γ−ξ = v(x, y)|Γ0 ,
(1)

where G = {(x, y)| − a < x < 0, 0 < y < b} and ∂G is the boundary of the rectangle G,
while Γt denotes the intersection of the line x = t (−a 6 t 6 0) with G = G∪ ∂G, v(x, y)
is the unknown and f(x, y) is a given function, λ = Const > 0,Γ = ∂G \Γ0 and ξ ∈]0, a[.
Many scientific works are dedicated to the investigation of nonlocal problems (see, for
example [2]-[6]). In some papers the possibility of variational formulations of such type
problems for partial differential [4] and ordinary differential equations [5], [6] are studied.

It is known that if f(x, y) ∈ C(G), then problem (1), has a unique classical solution
u(x, y) ∈ C2(G)∩C(G) [2],[3]. The aim of the paper is to generalize the definition of the
classical solution to some of the discontinuous f(x, y) functions on the right hand side.

Let us introduce some notations, definitions and facts [4]. Suppose g(x, y) and g0(y) are
defined almost everywhere on G \Γ0 and Γ0 respectively. In addition, let g(x, y) ∈ L2(G)
and g0(y) ∈ L2(Γ0). Construct the function g(x, y), defined almost everywhere on G as
follows: restriction of g(x, y) on G \ Γ0 is equivalent to g(x, y), and restriction on Γ0

(or the boundary value of g(0, y)) to g0(y). Subsequently, each such g(x, y) function,
defined almost everywhere on G will be identified with its generator g(x, y) and g0(y),
g(x, y) = (g(x, y), g0(y)). Denote the lineal of all such functions (pairs) by D(G).

Suppose that Q = {(x, y)|0 < x < ξ, 0 < y < b} , and on D(G) define a symmetric
extension operator τ that for any function v(x, y) = (v(x, y), v0(y)) of the lineal D(G)
corresponds to the function in the rectangle G ∪Q

τv(x, y) =

{
v(x, y), if (x, y) ∈ G \ Γ0,

−v(−x, y) + 2v0(y), if (x, y) ∈ Q
equivalent to the function τv(x, y) defined almost everywhere. It is called the symmetric
extension of the function v(x, y). Hereafter, we will use the notation τv(x, y) = ṽ(x, y).

Determine the scalar production onD(G) lineal by [g, h] =
∫ b

0

∫ ξ
−ξ

∫ x
−a g̃(s, y)h̃(s, y)dsdxdy.
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As a result, D(G) lineal becomes the preimage of Hilbert space H(G) with the norm

‖v‖H = [v, v]
1
2 , that is equivalent to the norm []v[]2 = ‖v(x, y)‖2

L2(G) + ‖v0(y)‖2
L2(0,b).

Thus H(G) is the Hilbert space. To indicate that, for example, the function g(x, y)
belongs to the space H(G) we often use g(x, y) = (g(x, y), g0(y)) ∈ H(G).

Suppose the domain of the operator A = −4+λI is DA(G) lineal of the space H(G),
for which the following conditions are fulled for each function v(x, y):

1. v(x, y) ∈ C2(G),
∂2v(x, y)

∂x2

∣∣∣∣
Γ−ξ

= 0,
∂2v(x, y)

∂xk

∣∣∣∣
Γ0

= 0, ∀y ∈ [0, b], k = 1, 2.

2. v(x, y)|Γ = 0, v(x, y)|Γ−ξ = v(x, y)|Γ0 .

The lineal DA(G) is dense at H(G) and the operator A = − 4 +λI is positively
defined on DA(G) lineal. Thus, we are able to follow the standard path of completion
of DA(G) lineal into energy space [1]. Define the scalar product on DA(G) lineal by

[g, h]A =
∫ b

0

∫ ξ
−ξ

∫ x
−a

(
∂g̃(s,y)
∂s

∂h̃(s,y)
∂s

+ ∂g̃(s,y)
∂y

∂h̃(s,y)
∂y

+ λg̃(s, y)h̃(s, y)
)
dsdxdy and for the cor-

responding norm use the notation ‖ · ‖A. Introducing the scalar multiplication DA(G)
lineal is transformed into the Hilbert space. Denote it by SA(G). Let us denote the
energy space obtained by completing the space SA(G) by HA(G). In this space the norm
defined by |‖v‖|2 = ‖v‖2

W
(1)
2 (G)

+ ‖v0(y)‖2

W
(1)
2 (0,b)

is equivalent to the norm ‖ · ‖A.
Thus, for any function v(x, y) = (v(x, y), v0(y)) ∈ H(G) of the space HA(G) we have

v(x, y) ∈ W (1)
2 (G), and v(0, y) = v0(y) boundary value and the traces v|Γ−ξ and v|Γ0 of

the function v(x, y) are equal and absolutely continuous (v0(y) ∈ W (1)
2 (0, b)).

Let us ϕ(y) ∈ L2(0, b), f(x, y) ∈ L2(G), then for the function f(x, y) = (f(x, y), ϕ(y)) ∈
H(G) the quadratic functional Ifϕ(v) = [v, v]A − 2[f, v] has the unique minimizing func-
tion ufϕ(x, y) ∈ HA(G) that for any v(x, y) ∈ HA(G) satisfies [ufϕ, v]A = [f, v]. Also there
is constant C0 > 0 such that ‖ufϕ‖A 6 C0‖f‖H . Based on this and on the equivalence of
norms (|‖ · ‖| ∼ ‖ · ‖A, [] · [] v ‖ · ‖H) there exists a constant C1 > 0 for which

‖ufϕ‖2

W
(1)
2 (G)

+ ‖ufϕ(0,y)‖2

W
(1)
2 (0,b)

≤ C1

(
‖f‖2

L2(G) + ‖ϕ‖2
L2(0,b)

)
. (2)

It is worth noting that ϕ(y) does not participate in the statement of the problem(1),
it belongs to the space L2(0, b) (as a function parameter) and there is correspondence
to each of its specific representatives (value) and to the unique minimizing function
uf$(x, y) ∈ HA(G) of the functional Ifϕ. When f(x, y) ∈ C(G) and ϕ(y) are such
that the corresponding minimizing function ufϕ(x, y) is smooth enough, then based on
the equation [ufϕ, v]A = [f, v] it is obtained that ufϕ(x, y) is the classical solution of the
problem (1): ufϕ(x, y) = u(x, y). Hereafter we will call ϕ(y) the coordination function
parameter. The following question arises. Is there ϕf (y) value of the function parameter
for which the minimizing function is the solution of the problem (1).

Theorem 1. Suppose f(x, y) = (f(x, y), ϕ(y)), where f(x, y) ∈ C(G) and ϕ(y) ∈ L2(0, b)
is the function parameter. In order to coincides the function ufϕ(x, y) ∈ HA(G) with the



On Non-Classical Solutions for some Non-Local Bitsadze-Samarskii ... 57

solution of problem (1), it is necessary and sufficient that

−d
2ufϕ(0, y)

dy2
+ λufϕ(0, y) = ϕ(y), y ∈]0, b[. (3)

Based on Theorem 1, when f(x, y) ∈ C(G) and ϕ(y) = −d2u(0,y)
dy2

+ λu(0, y) the mini-

mizing function ufϕ(x, y) of Ifϕ will coincide with the classical solution u(x, y) of problem
(1). In particular, if f(x, y) ∈ RA(G), we have ϕ(y) = f(−ξ, y).

Theorem 1 is fair even when we change equation (3) to its integral form.

Theorem 2. Suppose f(x, y) = (f(x, y), ϕ(y)), f(x, y) ∈ C(G), ϕ(y) ∈ L2(0, b) is the
value of the function parameter. In order the minimizing function ufϕ(x, y) ∈ HA(G)
coincides with the solution of problem (1), it is necessary and sufficient to have∫ b

0

(
dufϕ(0, y)

dy

dη(y)

dy
+ λufϕ(0, y)η(y)

)
dy =

∫ b

0

ϕ(y)η(y)dy,∀η(y) ∈
0

W
(1)

2 (0, b). (4)

According to Theorem 2, if f(x, y) ∈ C(G), then the following two problems are
equivalent:

I. Find the classical solution of problem (1);
II. Find the minimizing function ufϕ(x, y) ∈ HA(G) of the functional Jfϕ(v), for which

the trace ufϕ(0, y) ∈
0

W
(1)

2 (0, b) and the value of the parameter function ϕ(y) ∈ L2(0, b)
satisfy equality (4).

It should be noted that the second problem can be posed in a more general way if we
replace f(x, y) ∈ C(G) by f(x, y) ∈ L2(G). Thus, in order to generalize the concept of
the classical solution of problem (1) it is desirable to introduce the following definition.

Definition. Suppose that for f(x, y) ∈ L2(G), there exists a function ϕf (y) ∈ L2(0, b)

such that f(x, y) = (f(x, y), ϕf (y)) ∈ HA(G) and the trace ufϕf (0, y) ∈
0

W
(1)

2 (0, b) of the

function ufϕf (x, y) minimizing the functional Jfϕf (v) in the space HA(G) satisfies (4),

then such ufϕf (x, y) ∈ HA(G) is called a generalized solution of problem (1).

Hereinafter, ϕf (y) is called the function of the right-hand side f(x, y) and f(x, y) =
(f(x, y), ϕf (y)) ∈ H(G) the coordinated pair of (1).

It is easy to see that, if there exists a generalized solution of problem (1), then it is
unique. Hereinafter, it is denoted by u(x, y). It is clear that if f(x, y) ∈ C(G) then the
generalized solution of problem (1) coincides with the classical solution: u(x, y) = u(x, y).

According to the inequality ‖ufϕ‖A 6 C0‖f‖H , there exists a constant C0 > 0 such
that

‖u(x, y)‖A ≤ C0‖(f(x, y), ϕf (y))‖H . (5)

(5) expresses continuous dependence of the generalized solution on the coordinated pair.

Theorem 3. Suppose fn(x, y) = (fn(x, y), ϕn(y)) ∈ H(G), n = 1, 2... is a fundamen-
tal sequence of coordinated pairs, and limn→∝ ‖fn(x, y) − f(x, y)‖L2(G) = 0. Besides, let
{un(x, y)} be the sequence of the proper generalized solutions of these coordinate pairs.
Then

{
fn(x, y)

}
converges to the coordinated pair of problem (1) and the sequence of the

generalized solutions {un(x, y)} converges to the general solution of problem (1).
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To illustrate that the above definition of a generalized solution of problem (1) gener-
alizes the concept of a classical solution, let us give a example of the nonclassical solution
of problem (1). Take a function u(x, y) ∈ HA(G) that does not have the smoothness of
a classical solution (for example, a second-order derivative has a discontinuity on some
curve). With u(x, y) we are finding “corresponding” f(x, y) = (f(x, y), ϕf (y)) ∈ HA(G)
pairs: f(x, y) = −4 u(x, y) + λu(x, y) almost everywhere on the G and at the same time
relation (4) is satisfied (at the expense of choosing proper u(x, y)). In the simple cases

u(0, y) will be smooth and ϕf (y) = −d2u(0,y)
dy2

+ λu(0, y). It is likely that u(x, y), chosen in

this way, will be a generalized solution of problem (1). To prove this, it is sufficient to
show that the variation δJfϕf (u, h) = 0.

In the example below, we took λ = 0, ξ = 1
2

and a = b = 1.

Example. Suppose G = G1 ∪G2. Consider

u(x, y) =

{
4x(x+ 1)y(y − 1), when (x, y) ∈ G1,

−y2 + y, when (x, y) ∈ G \G1.
(6)

Accordingly, f(x, y) =

{
−8(x2 + x+ y2 + y), when (x, y) ∈ G1,

2, when (x, y) ∈ G \G1

and ϕf (y) = 2, y ∈ [0, 1].
It is obvious that condition (4) is fulfilled. The fact that the corresponding variation is

zero can be verified easily. Thus, the function (6) is indeed a generalized solution (f(x, y),
is not continuous on Γ− 1

2
and obviously u(x, y) cannot be a classical solution).
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