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ON ONE-DIMENSIONAL NONLINEAR SYSTEM BASED ON MAXWELL MODEL
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Abstract. The initial-boundary value problem for one-dimensional system of nonlinear partial

differential equations with the mixed boundary condition is considered. It is proved that in

some cases of nonlinearity there exists a critical value ψc of the boundary data such that for

0 < ψ < ψc the steady state solution of the studied problem is linearly stable, while for ψ > ψc
is unstable. It is shown that as ψ passes through ψc then the Hopf type bifurcation may take

place.
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The present note deals with a nonlinear model which is obtained after adding two
terms to the second equation of well-known Maxwell’s system in one-dimensional case
[14]. This model is also some generalization of a system with two partial differential
equations describing many other processes (see, for instance, [1], [9], [12] and references
therein).

In the cylinder [0, 1] × [0,∞), let us consider the following initial-boundary value
problem:
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(1)

Many works are dedicated to the investigation and numerical solution of (1) type
models (see, for example, [2]-[13]). Here t and x are time and space variables respec-
tively, U = U(x, t), V = V (x, t) are unknown functions, U0, V0 are given functions, and
a, b, c, α, β, γ, δ, ψ are known positive parameters.

If δ = γ − α, it is easy to check that the unique stationary solution of problem (1) is
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Introducing a notation W = V α∂U

∂x
, after simple transformations, we get
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(3)

The unique stationary solution of problem (3) is
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Let
W (x, t) = Ws(x) +W1(x)eλt = ψ +W1(x)eλt,

V (x, t) = Vs(x) + V1(x)eλt =

(
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We investigate the linear stability of problem (3) by linearizing near the stationary
solution (Ws, Vs). After some transformations we have:
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It is not difficult to show that problem (4) has nontrivial solutions if and only if
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For corresponding λ = λn we have:
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Let us note that the stationary solution (Ws, Vs) of problem (3) is linearly stabile if
and only if Re(λn) < 0, for all n and unstable if there exists an integer m such that
Re(λm) > 0. From (4) it can be deduced that if 2α+ β − γ > 0, then stationary solution
(Ws, Vs) of problem (3) is linearly stable if and only if Pn(ψ, α, β, γ, a, b, c) < 0, for all n,
i.e.,

a (γ − α− β)

(
b

a
ψ2 +

c

a
ψ

) β−α−1
α+β−γ

+ αbψ2

(
b

a
ψ2 +

c

a
ψ

) γ−3α−1
2α+β−γ

<
π2

4
.

We studied the stability of the steady state solution which depends on a boundary
condition ψ > 0. For sufficiently small values of ψ the steady state solution is linearly
stable. But as ψ passes through a critical value ψc, the stability changes and a Hopf
bifurcation may take place [15].
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