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Abstract. The fourth-order integro-differential parabolic equation is considered. The stability
and uniqueness of the solution to one initial-boundary value problem is given.
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The mathematical description of many processes is carried out by integro-differential
equations and their systems. Such models have been arisen in connection to the local
partial derivative equations. Nevertheless, the study of these models began relatively
late. The models of integro-differential type discussed in the presented work were first
proposed in [5]. They arose, on the one hand, while describing real diffusion processes
(see, for instance, [1], [2], [7], [9], [10], [13], [14] and references therein), and on the other
hand, during the generalization of well-known nonlinear parabolic equations, to which
many scientific works are devoted to (see, for instance, [4], [12] and references therein).
A characteristic feature of these models is that nonlinear coefficients depend on higher-
order derivatives that contain integrals with respect to time variables of the derivatives
of functions (solutions) we are searching for.

As already mentioned, the reduction of the Maxwell system of differential equations to
the form of integro-differential equations was first performed in [5] and has the following
form
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where, H = (Hy, Hy, H3) is the vector of the magnetic field.

The above-mentioned integro-differential model (1) is complicated and so far, can be
studied only for particular classes of nonlinearity (see, for instance, [3], [5] - [9], [11] and
references therein).

The presented work discusses a natural mathematical generalization of the scalar ana-
log of the integro-differential model (1). In particular, the corresponding fourth-order
integro-differential equation is investigated. The stability and uniqueness of the solution
to one initial-boundary value problem is studied.

In the rectangle Qr = [0,1] x [0,7], where T is a positive constant, the following
initial-boundary value problem is considered:
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u(0,1) = u(1,t) =0, (3)
ou ou

5o(0,0) = S (1,0) =0, 4)

u(z,0) = up(x). (5)

In equation (2) and in the initial condition (5), f and ug are given functions of their
arguments.

It is easy to show that the solution to problem (2) - (5) is stable with respect to the
right-hand side f and the initial condition uq.

Multiplying equation (2) by the function w, integrating on [0; 1], using the formula of
the integration by partial, and applying the Poincare-Friedrichs inequality
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the following estimation is easily obtained
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where || - || denotes the norm of the space L2(0,1). The last inequality means the stability
of the solution of problem (2) - (5) with respect to the right side f and the initial condition
Ug-

Now, let us turn to the question of uniqueness of the solution. Suppose that u; and
ug are two solutions of problem (2) - (5). If w = uy — uy, then we have
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w(0,t) = w(l,t) =0, (7)
ow ow
w(zx,0) = 0. (9)

Let us multiply equation (6) by w and integrate the obtained equation by [0, 1]. If we
use the formula of integration by parts twice, boundary conditions (7), (8), and the easily
verifiable inequality

(ca — db)(a —b) > =(c —d)(a® — b?),
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we will have
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Using the following notation
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finally we arrive at
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After integrating over ¢ and taking into account the initial condition (9), we obtain
lw]* < 0.

From the last inequality it follows that ||w|| = 0, which proves the uniqueness of the
solution of problem (2)-(5).
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