Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 35, 2021

ON THE CRITERION OF THE WELL-POSEDNESS FOR THE GENERAL BOUNDARY VALUE PROBLEMS FOR THE SYSTEMS OF ORDINARY LINEAR DIFFERENTIAL EQUATIONS

Malkhaz Ashordia

Abstract. The necessary and sufficient condition and effective sufficient conditions are presented for the well-posedness of the general linear boundary value problems for systems of ordinary differential equations.

Keywords and phrases: Linear systems of ordinary differential equations, the general boundary value problem, well-posedness, necessary and sufficient condition, effective sufficient conditions.

AMS subject classification (2010): 34A12, 34A30, 34B05.

Let x_0 be the unique solution of the boundary value problem

$$\frac{dx}{dt} = P_0(t)x + q_0(t) \text{ for a.a. } t \in I, \ \ell_0(x) = c_0$$
(1)

where $I = [a, b], P_0 \in L(I; \mathbb{R}^{n \times n}), q_0 \in L(I; \mathbb{R}^n), \ell_0 : C(I; \mathbb{R}^n) \to \mathbb{R}^n$ is a linear vectorfunctional, bounded with respect to the norm $\|.\|_c$, and $c_0 \in \mathbb{R}^n$.

Along with problem (1), consider the sequence of the problems

$$\frac{dx}{dt} = P_m(t)x + q_m(t) \text{ for a.a. } t \in I, \ \ell_m(x) = c_m \tag{1}_m$$

(m = 1, 2, ...), where $P_m \in L(I; \mathbb{R}^{n \times n})$, $q_m \in L(I; \mathbb{R}^n)$, $\ell_m : C(I; \mathbb{R}^{n \times n}) \to \mathbb{R}^n$ is a linear bounded vector-functional, and $c_m \in \mathbb{R}^n$.

We present the necessary and sufficient and effective sufficient conditions for problem (1_m) to have a unique solution x_m for any sufficiently large m and

$$\lim_{m \to +\infty} \|x_m - x_0\|_c = 0.$$
 (2)

Similar question for the initial problem is investigated in [2, 5, 6] (see also references therein), where the sufficient and the necessary and sufficient conditions are obtained. In [1, 3, 4] the general linear boundary value problem (1) is investigated. The necessary and sufficient conditions have been proved in [1, 3] for the considered case.

Designations: $\mathbb{R} =] - \infty, +\infty[, I_n \text{ is the identity } n \times n \text{-matrix, } O_{n \times n} \text{ and } 0_n \text{ are, the zero } n \times n \text{-matrix and zero } n \text{-vector; } ||x||_c = \max\{||x(t)|| : t \in I\} \text{ is the norm of the vector-function } x : I \to \mathbb{R}^n, |||\ell||| \text{ is the norm of the linear bounded vector-functional } \ell.$ **Definition.** We say that the sequence $(P_m, q_m; \ell_m)$ (m = 1, 2, ...) belongs to the set $\mathcal{S}(P_0, q_0; \ell_0)$ if for every $c_0 \in \mathbb{R}^n$ and a sequence $c_m \in \mathbb{R}^n$ (m = 1, 2, ...) satisfying condition $\lim_{k\to+\infty} c_m = c_0$, problem (1_m) has a unique solution x_m for any sufficiently large m and condition (2) holds.

Theorem 1. Let the conditions

$$\lim_{m \to +\infty} \ell_m(x) = \ell_0(x) \quad \text{for} \quad x \in C(I; \mathbb{R}^n), \quad \limsup_{m \to +\infty} |||\ell_m||| < \infty$$
(3)

hold. Then

$$\left(\left(P_m, q_m; \ell_m \right) \right)_{m=1}^{\infty} \in \mathcal{S}(P_0, q_0; \ell_0)$$

$$\tag{4}$$

if and only if there exist matrix-functions $H_m \in AC(I; \mathbb{R}^{n \times n})$ (m = 0, 1, ...) such that

$$\limsup_{m \to +\infty} \int_{a}^{b} \|H'_{m}(t) + H_{m}(t)P_{m}(t)\|dt < \infty, \quad \inf\{|\det(H_{0}(t))|: t \in I\} > 0, \qquad (5)$$

and uniformly on I the conditions hold

$$\lim_{n \to +\infty} H_m(t) = H_0(t), \tag{6}$$

$$\lim_{m \to +\infty} \int_{a}^{t} H_{m}(t) P_{m}(t) dt = \int_{a}^{t} H_{0}(t) P_{0}(t) dt,$$
(7)

$$\lim_{m \to +\infty} \int_{a}^{t} H_{m}(t)q_{m}(t)dt = \int_{a}^{t} H_{0}(t)q_{0}(t)dt.$$
 (8)

Theorem 2. Let (3) hold. Then inclusion (4) holds if and only if $\lim_{m \to +\infty} X_m^{-1}(t) = X_0^{-1}(t)$, $\lim_{m \to +\infty} \int_a^t X_m^{-1}(\tau) q_m(\tau) d\tau = \int_a^t X_0^{-1}(\tau) q_0(\tau) d\tau$ hold uniformly on I, where X_0 and X_m (m = 1, 2, ...) are the fundamental matrices of systems (1) and (1_m) , respectively.

Theorem 3. Let $P_0^* \in L(I; \mathbb{R}^{n \times n})$, $q_0^* \in L(I; \mathbb{R}^n)$, $c_0^* \in \mathbb{R}^n$, and a $\ell_0^* : C(I; \mathbb{R}^{n \times n}) \to \mathbb{R}^n$ be a linear bounded vector-functional such that the boundary value problem $\frac{dx}{dt} = P_0^*(t)x + q_0^*(t), \ \ell_0^*(x) = c_0^*$ has a unique solution x_0^* . Let, moreover, there exist matrixand vector-functions $H_m \in AC(I; \mathbb{R}^{n \times n})$ and $h_m \in AC(I; \mathbb{R}^n)$ (m = 1, 2, ...) such that $\inf\{|\det(H_m(t))| : t \in I\} > 0$ for every sufficiently large m, $\lim_{m \to +\infty} (c_m + \ell_m^*(h_m)) = c_0^*$, $\lim_{m \to +\infty} \ell_m^*(y) = \ell_0^*(y) \ (y \in C(I; \mathbb{R}^n), \limsup_{m \to +\infty} |||\ell_m^*||| < \infty, \limsup_{m \to +\infty} \int_a^b ||P_m^*(t)|| dt < \infty$ and the conditions $\lim_{m \to +\infty} \int_a^t P_m^*(\tau) d\tau = \int_a^t P_0^*(\tau) d\tau$, $\lim_{m \to +\infty} \left(h_m(t) - h_m(a) + \int_a^t (H_m(\tau)q_m(\tau) - P_m^*(\tau)h_m(\tau))d\tau\right) = \int_a^t q_0^*(\tau) d\tau$ hold uniformly on I, where $P_m^*(t) \equiv (H'_m(t) + H_m(t)P_m(t)) \times H_m^{-1}(t), \ \ell_m^*(y) \equiv \ell_m(H_m^{-1}y) \ (m = 1, 2, \ldots)$. Then problem (1_m) has the unique solution x_m for any sufficiently large m and $\lim_{m \to +\infty} ||H_m x_m + h_m - x_0^*||_c = 0$.

Corollary 1. Let conditions (3), (5) and $\lim_{m \to +\infty} (c_m - \varphi_m(a)) = c_0$ hold, and conditions (6), (7) and $\lim_{m \to +\infty} \int_{a}^{t} \left(H_{m}(\tau)(q_{m}(\tau) - \varphi_{m}'(\tau)) + P_{m}^{*}(\tau)\varphi_{m}(\tau) \right) d\tau = \int_{a}^{t} H_{0}(\tau)q_{0}(\tau)d\tau \text{ hold}$ uniformly on I, where $H_{m} \in AC(I; \mathbb{R}^{n \times n}), \varphi_{m} \in AC(I; \mathbb{R}^{n}) \ (m = 0, 1, ...).$ Then problem (1_{m}) has a unique solution x_{m} for any sufficiently large m and $\lim_{m \to +\infty} ||x_{m} - \varphi_{m} - x_{0}||_{c} = 0.$

We give some effective sufficient conditions guaranteeing inclusion (4).

Theorem 4. Let conditions (3) and $\limsup_{a \to +\infty} \int_{a}^{b} \|P_{m}(t)\| dt < \infty \text{ hold, and } \lim_{m \to +\infty} \int_{a}^{t} P_{m}(\tau) d\tau = \int_{a}^{t} P_{0}(\tau) d\tau \text{ and } \lim_{m \to +\infty} \int_{a}^{t} q_{m}(\tau) d\tau = \int_{a}^{t} q_{0}(\tau) d\tau \text{ uniformly on } I.$ Then inclusion (4) holds.

Corollary 2. Let conditions (3) and (5) hold, and let conditions (6),

 $\lim_{m \to +\infty} \int_{a}^{t} H_{m}(\tau) P_{m}(\tau) d\tau = \int_{a}^{t} P^{*}(\tau) d\tau \text{ and } \lim_{m \to +\infty} \int_{a}^{t} H_{m}(\tau) q_{m}(\tau) d\tau = \int_{a}^{t} q^{*}(\tau) d\tau$ hold uniformly on I, where $H_{m} \in AC(I; \mathbb{R}^{n \times n})$ $(m = 0, 1, ...), P^{*} \in L(I; \mathbb{R}^{n \times n}), q^{*} \in L(I; \mathbb{R}^{n})$. Let, moreover, the problem $\frac{dx}{dt} = (P_{0}(t) - P^{*}(t))x + (q_{0}(t) - q^{*}(t)), \ell_{0}(x) = c_{0}$ have a unique solution. Then $((P_{m}, q_{m}; l_{m}))_{m=1}^{\infty} \in \mathcal{S}(P_{0} - P^{*}, q_{0} - q^{*}; \ell_{0}).$

Corollary 3. Let (3) hold and let there exist a natural μ and matrix-functions $B_i \in$ $AC(I; \mathbb{R}^{n \times n}) \ (j = 1, \dots, \mu - 1) \ such \ that \limsup_{m \to +\infty} \int_{a}^{b} \|H'_{m \mu - 1}(t) + H_{m \mu - 1}(t)P_{m}(t)\|dt < \infty,$ and uniformly on I

$$\begin{split} &\lim_{m \to +\infty} \left(H_{mj-1}(t) + \int_{a}^{t} H_{mj-1}(\tau) P_{m}(\tau) d\tau \right) = I_{n} + B_{j}(t) - B_{j}(a) \quad (j = 1, \dots, \mu - 1), \\ &\lim_{m \to +\infty} \left(H_{m\mu-1}(t) + \int_{a}^{t} H_{m\mu-1}(\tau) P_{m}(\tau) d\tau \right) = I_{n} + \int_{t_{0}}^{t} P_{0}(\tau) d\tau, \\ &\lim_{m \to +\infty} \int_{a}^{t} H_{m\mu-1}(\tau) q_{m}(\tau) d\tau = \int_{a}^{t} q_{0}(\tau) d\tau, \\ & \text{where } H_{mj}(t) \equiv - \left(H_{mj-1}(\tau)(t) + \int_{a}^{t} H_{mj-1}(\tau) P_{m}(\tau) d\tau - B_{j}(t) + B_{j}(a) \right) H_{mj-1}(t) \\ & (j = 1, \dots, \mu - 1; \ m = 1, 2, \dots), \ H_{m0}(t) \equiv I_{n}. \ Then \ inclusion \ (4) \ holds. \end{split}$$

$$\begin{aligned} & \text{Corollary 3'. Let conditions \ (3) \ and \ (5) \ hold, \ and \ let \ uniformly \ on \ I \ hold \ the \ conditions \\ & \lim_{m \to +\infty} \int_{a}^{t} H_{m}(\tau) q_{m}(\tau) d\tau = B(t) - B(a), \ \lim_{m \to +\infty} \int_{a}^{t} H_{m}(\tau) P_{m}(\tau) d\tau = \int_{a}^{t} P_{0}(\tau) d\tau, \\ & \lim_{m \to +\infty} \int_{a}^{t} H_{m}(\tau) q_{m}(\tau) d\tau = \int_{t_{0}}^{t} q_{0}(\tau) d\tau, \ where B \in AC(I; \mathbb{R}^{n \times n}), H_{0}(t) \equiv O, \end{aligned}$$

$$H_m(t) \equiv I_n - \int_a^t P_m(\tau) \, d\tau + B(t) - B(a) \ (m = 1, 2, ...).$$
 Then inclusion (4) holds.

 t_0

Corollary 3' is a case of Corollary 3, where $\mu = 2$. It has the form if $B(t) \equiv \int P_0(\tau) d\tau$.

Corollary 3". Let conditions (3) and $\limsup_{m \to +\infty} \int_{a}^{b} \|I_n - H_m(t)\| P_m(t) dt < \infty \text{ hold, and on}$ $I \text{ uniformly } \lim_{m \to +\infty} B_m(t) = O_{n \times n}, \quad \lim_{m \to +\infty} \int_{a}^{t} B'_m(\tau) \left(\int_{a}^{\tau} P_m(s) ds\right) d\tau = O_{n \times n},$ $\lim_{m \to +\infty} \int_{a}^{t} (I_n - B_m(\tau)) q_m(\tau) d\tau = \int_{a}^{t} q_0(\tau) d\tau, \text{ where } B_m(t) \equiv \int_{a}^{t} (P_m(\tau) - P_0(\tau)) d\tau \quad (m = 1, 2, \ldots).$ Then inclusion (4) holds.

Corollary 4. Let (3) hold. Then inclusion (4) holds if and only if there exist matrixfunctions $Q_m \in L(I; \mathbb{R}^{n \times n})$ (m = 0, 1, ...) such that $\limsup_{m \to +\infty} \int_a^b ||P_m(t) - Q_m(t)|| dt < \infty$, and the conditions $\lim_{m \to +\infty} Z_m^{-1}(t) = Z_0^{-1}(t)$, $\lim_{m \to +\infty} \int_a^t Z_m^{-1}(\tau) P_m(\tau) d\tau = \int_a^t Z_0^{-1}(\tau) P_0(\tau) d\tau$, $\lim_{m \to +\infty} \int_a^t Z_m^{-1}(\tau) q_m(\tau) d\tau = \int_a^t Z_0^{-1}(\tau) q_0(\tau) d\tau$ hold uniformly on I, where $Z_m(Z_m(a) = I_n)$ (m = 1, 2, ...) is a fundamental matrix of the system $\frac{dx}{dt} = Q_m(t)x$.

REFERENCES

- 1. ASHORDIA, M. Criteria of correctness of linear boundary value problems for systems of generalized ordinary differential equations. *Czechoslovak Math. J.*, **46** (121), 3 (1996), 385-404.
- ASHORDIA, M. The Initial Problem for Linear Systems of Generalized Ordinary Differential Equations, Linear Impulsive and Ordinary Differential Systems. Numerical Solvability. Mem. Differ. Equ. Math. Phys., 78 (2019), 1-162.
- ASHORDIA, M. The General boundary value Problems for Linear Systems of Generalized Ordinary Differential Equations, Linear Impulsive differential and Ordinary Differential Systems. Numerical Solvability. Mem. Differ. Equ. Math. Phys., 81 (2020), 1-184.
- KIGURADZE, I. The Initial Value Problem and Boundary Value Problems for Systems of Ordinary Differential Equations. Vol. I. Linear Theory (Russian). "Metsniereba", Tbilisi, 1997.
- Krasnosel'skiĭ, M.A., Kreĭn, S.G. On the principle of averaging in nonlinear mechanics (Russian). Uspehi Mat. Nauk (N.S.) 10, 3 (65) (1955), 147-152.
- Kurzweil, J., Vorel, Z. Continuous dependence of solutions of differential equations on a parameter (Russian). Czechoslovak Math. J., 7, 82 (1957), 568-583.

Received 26.05.2021; revised 29.07.2021; accepted 26.09.2021.

Author(s) address(es):

Malkhaz Ashordia A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University Tamarashvili str. 6, 0177 Tbilisi, Georgia E-mail: ashord@rmi.ge, malkhaz.ashordia@tsu.ge