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Let x0 be the unique solution of the boundary value problem

dx

dt
= P0(t)x + q0(t) for a.a. t ∈ I, `0(x) = c0 (1)

where I = [a, b], P0 ∈ L(I; Rn×n), q0 ∈ L(I; Rn), `0 : C(I; Rn) → Rn is a linear vector-
functional, bounded with respect to the norm ‖.‖c, and c0 ∈ Rn.

Along with problem (1), consider the sequence of the problems

dx

dt
= Pm(t)x + qm(t) for a.a. t ∈ I, `m(x) = cm (1m)

(m = 1, 2, . . . ), where Pm ∈ L(I; Rn×n), qm ∈ L(I; Rn), `m : C(I; Rn×n) → Rn is a linear
bounded vector-functional, and cm ∈ Rn.

We present the necessary and sufficient and effective sufficient conditions for problem
(1m) to have a unique solution xm for any sufficiently large m and

lim
m→+∞

‖xm − x0‖c = 0. (2)

Similar question for the initial problem is investigated in [2, 5, 6] (see also references
therein), where the sufficient and the necessary and sufficient conditions are obtained. In
[1, 3, 4] the general linear boundary value problem (1) is investigated. The necessary and
sufficient conditions have been proved in [1, 3] for the considered case.

Designations: R =] −∞, +∞[, In is the identity n × n-matrix, On×n and 0n are, the
zero n × n-matrix and zero n-vector; ‖x‖c = max{‖x(t)‖ : t ∈ I} is the norm of the
vector-function x : I → Rn, |||`||| is the norm of the linear bounded vector-functional `.
Definition. We say that the sequence (Pm, qm; `m) (m = 1, 2, . . . ) belongs to the set
S(P0, q0; `0) if for every c0 ∈ Rn and a sequence cm ∈ Rn (m = 1, 2, . . . ) satisfying condi-
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tion lim
k→+∞

cm = c0, problem (1m) has a unique solution xm for any sufficiently large m

and condition (2) holds.

Theorem 1. Let the conditions

lim
m→+∞

`m(x) = `0(x) for x ∈ C(I; Rn), lim sup
m→+∞

|||`m||| < ∞ (3)

hold. Then (
(Pm, qm; `m)

)∞
m=1

∈ S(P0, q0; `0) (4)

if and only if there exist matrix-functions Hm ∈ AC(I; Rn×n) (m = 0, 1, . . . ) such that

lim sup
m→+∞

b∫
a

‖H ′
m(t) + Hm(t)Pm(t)‖dt < ∞, inf

{
| det(H0(t))| : t ∈ I

}
> 0, (5)

and uniformly on I the conditions hold

lim
m→+∞

Hm(t) = H0(t), (6)

lim
m→+∞

t∫
a

Hm(t)Pm(t)dt =

∫ t

a

H0(t)P0(t)dt, (7)

lim
m→+∞

t∫
a

Hm(t)qm(t)dt =

∫ t

a

H0(t)q0(t)dt. (8)

Theorem 2. Let (3) hold. Then inclusion (4) holds if and only if lim
m→+∞

X−1
m (t) = X−1

0 (t),

lim
m→+∞

t∫
a

X−1
m (τ)qm(τ) dτ =

t∫
a

X−1
0 (τ)q0(τ) dτ hold uniformly on I, where X0 and Xm

(m = 1, 2, . . . ) are the fundamental matrices of systems (1) and (1m), respectively.

Theorem 3. Let P ∗
0 ∈ L(I; Rn×n), q∗0 ∈ L(I; Rn), c∗0 ∈ Rn, and a `∗0 : C(I; Rn×n) →

Rn be a linear bounded vector-functional such that the boundary value problem dx
dt

=
P ∗

0 (t)x + q∗0(t), `∗0(x) = c∗0 has a unique solution x∗0. Let, moreover, there exist matrix-
and vector-functions Hm ∈ AC(I; Rn×n) and hm ∈ AC(I; Rn) (m = 1, 2, . . . ) such that
inf{| det(Hm(t))| : t ∈ I} > 0 for every sufficiently large m, lim

m→+∞
(cm + `∗m(hm)) = c∗0,

lim
m→+∞

`∗m(y) = `∗0(y) (y ∈ C(I; Rn), lim sup
m→+∞

|||`∗m||| < ∞, lim sup
m→+∞

b∫
a

‖P ∗
m(t)‖dt < ∞ and

the conditions lim
m→+∞

t∫
a

P ∗
m(τ)dτ =

t∫
a

P ∗
0 (τ) dτ , lim

m→+∞

(
hm(t)− hm(a) +

t∫
a

(
Hm(τ)qm(τ)

−P ∗
m(τ)hm(τ)

)
dτ

)
=

t∫
a

q∗0(τ) dτ hold uniformly on I, where P ∗
m(t) ≡ (H ′

m(t)+Hm(t)Pm(t))

×H−1
m (t), `∗m(y) ≡ `m(H−1

m y) (m = 1, 2, . . . ). Then problem (1m) has the unique solution
xm for any sufficiently large m and lim

m→+∞
‖Hm xm + hm − x∗0‖c = 0.
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Corollary 1. Let conditions (3), (5) and lim
m→+∞

(cm − ϕm(a)) = c0 hold, and conditions

(6), (7) and lim
m→+∞

t∫
a

(
Hm(τ)(qm(τ) − ϕ′m(τ)) + P ∗

m(τ)ϕm(τ)
)
dτ =

t∫
a

H0(τ)q0(τ)dτ hold

uniformly on I, where Hm ∈ AC(I; Rn×n), ϕm ∈ AC(I; Rn) (m = 0, 1, . . . ). Then problem
(1m) has a unique solution xm for any sufficiently large m and lim

m→+∞
‖xm−ϕm−x0‖c = 0.

We give some effective sufficient conditions guaranteeing inclusion (4).

Theorem 4. Let conditions (3) and lim sup
a→+∞

b∫
a

‖Pm(t)‖ dt < ∞ hold, and lim
m→+∞

t∫
a

Pm(τ) dτ =

t∫
m

P0(τ) dτ and lim
m→+∞

t∫
a

qm(τ) dτ =
t∫

a

q0(τ) dτ uniformly on I. Then inclusion (4) holds.

Corollary 2. Let conditions (3) and (5) hold, and let conditions (6),

lim
m→+∞

t∫
a

Hm(τ)Pm(τ) dτ =
t∫

a

P ∗(τ) dτ and lim
m→+∞

t∫
a

Hm(τ)qm(τ) dτ =
t∫

a

q∗(τ) dτ

hold uniformly on I, where Hm ∈ AC(I; Rn×n) (m = 0, 1, . . . ), P ∗ ∈ L(I; Rn×n), q∗ ∈
L(I; Rn). Let, moreover, the problem dx

dt
= (P0(t) − P ∗(t))x + (q0(t) − q∗(t)), `0(x) = c0

have a unique solution. Then
(
(Pm, qm; lm)

)∞
m=1

∈ S(P0 − P ∗, q0 − q∗; `0).

Corollary 3. Let (3) hold and let there exist a natural µ and matrix-functions Bj ∈

AC(I; Rn×n) (j = 1, . . . , µ− 1) such that lim sup
m→+∞

b∫
a

‖H ′
m µ−1(t) + Hm µ−1(t)Pm(t)‖dt < ∞,

and uniformly on I

lim
m→+∞

(
Hm j−1(t) +

t∫
a

Hm j−1(τ)Pm(τ)dτ

)
= In + Bj(t)−Bj(a) (j = 1, . . . , µ− 1),

lim
m→+∞

(
Hm µ−1(t) +

t∫
a

Hm µ−1(τ)Pm(τ)dτ

)
= In +

t∫
t0

P0(τ) dτ ,

lim
m→+∞

t∫
a

Hm µ−1(τ)qm(τ)dτ =
t∫

a

q0(τ) dτ ,

where Hmj(t) ≡ −
(

Hm j−1(τ)(t) +
t∫

a

Hm j−1(τ)Pm(τ)dτ −Bj(t) + Bj(a)

)
Hm j−1(t)

(j = 1, . . . , µ− 1; m = 1, 2, . . . ), Hm0(t) ≡ In. Then inclusion (4) holds.

Corollary 3′. Let conditions (3) and (5) hold, and let uniformly on I hold the conditions

lim
m→+∞

t∫
a

Pm(τ) dτ = B(t)−B(a), lim
m→+∞

t∫
a

Hm(τ)Pm(τ) dτ =
t∫

a

P0(τ) dτ ,

lim
m→+∞

t∫
a

Hm(τ) qm(τ) dτ =
t∫

t0

q0(τ) dτ, whereB ∈ AC(I; Rn×n), H0(t) ≡ O,

Hm(t) ≡ In −
t∫

a

Pm(τ) dτ + B(t)−B(a) (m = 1, 2, . . . ). Then inclusion (4) holds.

Corollary 3′ is a case of Corollary 3, where µ = 2. It has the form if B(t) ≡
t∫

a

P0(τ) dτ.



14 M. Ashordia

Corollary 3′′. Let conditions (3) and lim sup
m→+∞

b∫
a

‖In −Hm(t)‖Pm(t)dt < ∞ hold, and on

I uniformly lim
m→+∞

Bm(t) = On×n, lim
m→+∞

t∫
a

B′
m(τ)

(
τ∫
a

Pm(s)ds

)
dτ = On×n,

lim
m→+∞

t∫
a

(In − Bm(τ)) qm(τ)dτ =
t∫

a

q0(τ)dτ , where Bm(t) ≡
t∫

a

(Pm(τ) − P0(τ))dτ (m =

1, 2, . . . ). Then inclusion (4) holds.

Corollary 4. Let (3) hold. Then inclusion (4) holds if and only if there exist matrix-

functions Qm ∈ L(I; Rn×n) (m = 0, 1, . . . ) such that lim sup
m→+∞

b∫
a

‖Pm(t) − Qm(t)‖ dt < ∞,

and the conditions lim
m→+∞

Z−1
m (t) = Z−1

0 (t), lim
m→+∞

t∫
a

Z−1
m (τ) Pm(τ)dτ =

t∫
a

Z−1
0 (τ) P0(τ)dτ ,

lim
m→+∞

t∫
a

Z−1
m (τ) qm(τ)dτ =

t∫
a

Z−1
0 (τ) q0(τ)dτ hold uniformly on I, where Zm (Zm(a) = In)

(m = 1, 2, . . . ) is a fundamental matrix of the system dx
dt

= Qm(t)x.
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