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Let the vector-function x0 : I → Rn be the unique solution of problem

dx

dt
= P (t)x + q(t) for a.a. t ∈ I, `(x) = c0 (1)

I = [a, b], P ∈ L(I; Rn×n), q ∈ L(I; Rn), ` : C(I; Rn) → Rn is a linear vector-functional,
bounded with respect to the norm ‖.‖c, and c0 ∈ Rn.

Along with the problem we consider the difference scheme

∆y(k − 1) =
1

m

(
G1m(k) y(k)+G2m(k − 1) y(k − 1) + g1m(k) + g2m(k − 1)

)
(k = 1, . . . ,m), Lm(y) = γm (1m)

(m = 1, 2, . . . ), where Gjm ∈ E(Nm; Rn×n), gjm ∈ E(Nm; Rn) (j = 1, 2) and Lm :
E(J ; Rn×m) → Rn is a given linear bounded vector-functional. In addition, assume
G1m(0) = G2m(m) = On×n and g1m(0) = g2m(m) = 0n (m ∈ N).

We present the effective necessary and sufficient (moreover, the effective sufficient)
conditions for the convergence of the solution of difference scheme (1m) to x0. They are
proved in [2]. The analogous problem is investigated in [1] for the initial one.

Designations. R =]−∞, +∞[, N = {1, 2, . . . }, Nm = {1, . . . ,m}, Ñm = {0, 1, . . . ,m};
In is the identity n × n-matrix, On×n and 0n are, the zero n × n-matrix and zero n-
vector, respectively; ‖x‖c = max{‖x(t)‖ : t ∈ I} is the norm of the vector-function
x : I → Rn, |||`||| is the norm of the linear bounded vector-functional `. If J ⊂ N, then
E(J ; Rn×m) is the space of all bounded matrix-functions Y : J → Rn×m with the norm
‖Y ‖J = max{‖Y (k)‖ : k ∈ J}.

Let ∆Y (i−1) ≡ Y (i)−Y (i−1) for Y ∈ E(Ñm; Rn×m). Further, τm = (b−a)/m, τ0m =
a, τkm = a + kτm and Ikm =]τk−1 m, τkm[ (k ∈ Nm; m ∈ N). Let νm be function defined by
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νm(t) ≡ [(t−a)(b−a)−1m] (m ∈ N), where [T ] stands for the integer part of T . Obviously,

νm(τkm) = k (k ∈ Ñm; m ∈ N). pm : BV([a, b]; Rn) → E(Ñm; Rn) and qm : E(Ñm; Rn) →
BV([a, b]; Rn) (m ∈ N) are operators defined, respectively, by pm(x)(k) = x(τkm) and

qm(y)(t) ≡

{
y(k) if t = τkm for some k ∈ Ñm,

y(k)− 1
m

G1m(k)y(k)− 1
m

g1m(k) if t ∈]τk−1 m, τk m[ for some k ∈ Ñm.

Definition. The inclusion(
(G1m, G2m, g1m, g2m;Lm)

)+∞
m=1

∈ CS(P, q; `) (2)

means that for every c0 ∈ Rn and the sequence γm ∈ Rn (m ∈ N), satisfying the condition

lim
m→+∞

γm = c0, the difference problem (1m) has a unique solution ym ∈ E(Ñm; Rn) for any

sufficiently large m and lim
m→+∞

‖ym − pm(x0)‖Ñm
= 0.

Theorem 1. Let

lim
m→+∞

Lm(pm(x)) = `(x) for x ∈ BV(I; Rn), and lim sup
m→+∞

|||Lm||| < +∞. (3)

Then inclusion (2) holds if and only if there exist matrix-functions H ∈ AC(I; Rn×n) and

H1m, H2m ∈ E(Ñm; Rn×n) (m ∈ N) such that inf{| det(H(t))| : t ∈ I} > 0,

lim sup
m→+∞

m∑
k=1

(∥∥H2m(k)−Q1m(k)
∥∥ +

∥∥H1m(k)−Q2m(k))
∥∥)

< +∞, (4)

lim
m→+∞

max
k∈Ñm

{‖Hjm(k)−H(τkm)‖} = 0 (j = 1, 2), (5)

where Qj+1 m(k) ≡ Hjm(k − j)− 1
m

H1m(k) Gj+1 m(k − j) (j = 0, 1), and uniformly on I

lim
m→+∞

1

m

νm(t)∑
k=1

1∑
j=0

H1m(k) Gj+1m(k − j) =

t∫
a

H(τ)P (τ)dτ), (6)

lim
m→+∞

1

m

νm(t)∑
k=1

1∑
j=0

H1m(k) gj+1m(k − j) =

t∫
a

H(τ)q(τ)dτ. (7)

Remark. The limits equalities (6) and (7) are fulfilled uniformly on I if, respectively,

lim
m→+∞

max
i∈Nm

{∣∣∣ 1
m

i∑
k=1

1∑
j=0

H1m(k) Gj+1 m(k − j)−
τim∫
a

H(τ)P (τ)dτ)
∣∣∣} = On×n,

lim
m→+∞

max
i∈Nm

{∣∣∣ 1
m

i∑
k=1

1∑
j=0

H1m(k) gj+1 m(k − j)−
τim∫
a

H(τ)q(τ)dτ
∣∣∣} = 0n.

Let X and Ym be the normal fundamental matrices of systems (1) and (1m) (m ∈ N).

Theorem 2. Let conditions (3) and det
(
In + (−1)j 1

m
Gjm(k)

)
6= 0 (j = 1, 2; k ∈ Nm

m ∈ N) hold. Then inclusion (2) holds if and only if lim
m→+∞

max
k∈Ñm

{‖Y −1
m (k)−X−1(τkm)‖}

= 0 and lim
m→+∞

max
i∈Nm

{∣∣∣ 1
m

i∑
k=1

1∑
j=0

Y −1
m (k) gj+1 m(k − j)−

τim∫
a

X−1(τ)q(τ)dτ
∣∣∣} = 0n.
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If P satisfied the Lappo–Danilevskĭı condition then X(t) ≡ exp
( t∫

s

P (τ) dτ
)
. Further,

Ym(k) ≡
1∏

i=k

(
In− 1

m
G1m(i)

)−1(
In + 1

m
G2m(i− 1)

)
(m ∈ N). In Theorem 1, condition (4)

automatically holds because Ym is the fundamental matrix of system (1m) (m ∈ N).

Now we give a method of constructing of discrete real matrix-and vector-functions,
respectively, Gjm and gjm (j = 1, 2; m ∈ N) for which the conditions of Theorem hold.

We use the inductive method. Let Em ∈ E(Ñm; Rn×n) and let ξm ∈ E(Ñm; Rn) (m ∈ N)
be such that lim

m→+∞
‖Em‖Ñm

= 0 and lim
m→+∞

m‖ξm‖Ñm
= 0. Let Plm = X(τlm) + Em(l),

and let G1m(1) and G2m(0) be such that Ym(1) = P1m (l ∈ Ñm m ∈ N). It is evident

that
(
In −m−1G1m(1)

)−1(
In + m01G2m(0)

)
= P1m. So, G1m(1) and G2m(0) are arbitrary

matrices such that G1m(1) = m
(
In − P−1

1m

)
− G2m(0) P−1

1m . Let G1m(k), G2m(k − 1) and
Ym(k) (k = 1, . . . , l−1) be constructed. For the construction G1m(l) and G2m(l−1) we use

the equalities Ym(l) = Plm and Ym(l) =
(
In−m−1G1m(l)

)−1(
In+m−1G2m(l−1)

)
Ym(l−1).

As above, we obtain the relation G1m(l) = m
(
In − Pl−1 mP−1

lm

)
− G2m(l − 1) Pl−1 m P−1

lm .
So, G1m(l) and G2m(l − 1) will be an arbitrary matrix satisfying the last equality.

Let us now construct the discrete vector-functions gjm (j = 1, 2; m ∈ N). As g1m(l) and
g2m(l−1) we choose the vectors such that m−1Y −1

m (l)(g1m(1)+g2m(l−1)) = qlm (l ∈ Nm),

where qlm ≡ ξm(l)+
τlm∫
a

X−1(τ)q(τ)dτ (l ∈ Nm). Therefore, we have the following equalities

g1m(l) + g2m(l − 1) = mYm(l)qlm (l ∈ Nm) for the definition of gjm (j = 1, 2; m ∈ N).

We realize constructed above discrete matrix-and vector-functions for the example.

Example. Let X(t) ≡ exp
( t∫

a

P (τ)dτ
)

be the fundamental matrix of system (1) and let

Em(k) ≡ On×n and ξm(k) ≡ 0n for m ∈ N. Then Plm = exp
( τlm∫

a

P (τ)dτ
)

(l ∈ Ñm, m ∈

N). If we choose G2m(l − 1) = PlmP−1
l−1 m = exp

( τlm∫
τl−1 m

P (τ)dτ
)

(l ∈ Nm, m ∈ N), then

G1m(l) ≡ (m − 1)In −m exp
(
−

τlm∫
τl−1 m

P (τ)dτ
)
. For the definitions of gjm (j = 1, 2) we

have the relations g1m(l)+g2m(l−1) ≡ m
τlm∫
a

C(τlm, τ)q(τ)dτ (m ∈ N), where C(t, τ) is the

Cauchy matrix of system (1). In particular, we can take g1m(l) ≡ α m
τlm∫
a

C(τlm, τ)q(τ)dτ

and g2m(l − 1) ≡ (1− α) m
τlm∫
a

C(τlm, τ)q(τ)dτ (m ∈ N), where α is some number.

Theorem 3. Let conditions (3), lim sup
m→+∞

m∑
k=1

(
1
m

(‖G1m(k)‖ + ‖G2m(k − 1)‖)
)

< ∞ hold,

and lim
m→+∞

1
m

νm(t)∑
k=1

1∑
j=0

Gj+1 m(k− j) =
t∫

a

P (τ)dτ , lim
m→+∞

1
m

νm(t)∑
k=1

1∑
j=0

gj+1 m(k− j) =
t∫

a

q(τ)dτ
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hold uniformly on I. Then inclusion (2) holds.

Proposition. Let conditions (3), (4), (5), lim
m→+∞

1
m

max
k∈Ñm

{‖Gjm(k)‖+ ‖gjm(k)‖} = 0 (j =

1, 2) hold, and (6), (7) hold uniformly on I, where H ∈ AC(I; Rn×n), H1m, H2m ∈
E(Ñm; Rn×n) (m ∈ N). Let, moreover, either lim sup

m→+∞

(
1
m

m∑
k=0

(‖Gjm(k)‖+ ‖gjm(k)‖)
)

< ∞

(j = 1, 2) or lim sup
m→+∞

m∑
k=0

1∑
j=0

‖H1m(k)−H2m(k − j)‖ < ∞. Then inclusion (2) holds.

Corollary. Let condition (3) hold and let there exist a natural µ and matrix-functions

Bjl ∈ E(Ñm; Rn×n), Bjl(a) = On×n (j = 1, 2; l = 0, . . . , µ− 1) such that

lim sup
m→+∞

m∑
k=1

(∥∥H2m(k)−Q1mµ(k)
∥∥ +

∥∥H1m(k)−Q2mµ(k))
∥∥)

< ∞,

lim
m→+∞

max
k∈Ñm

{‖Hjmµ(k)− In‖} = 0 (j = 1, 2), where Qj+1 mµ(k) ≡ Hjmµ(k − j)

− 1
m

H1mµ(k) Gj+1 mµ(k − j) (j = 0, 1), and lim
m→+∞

1
m

νm(t)∑
k=1

1∑
j=0

Gj+1 mµ(k − j) =
t∫

a

P (τ)dτ ,

lim
m→+∞

1
m

νm(t)∑
k=1

1∑
j=0

gj+1 mµ(k − j) =
t∫

a

q(τ)dτ hold uniformly on I, where H1m0(k) = In,

H1m l+1(k) ≡
(

1
m

H1ml(k) G1m(k) +Q1(H1ml, G1m, G2m)(k) + B1 l+1(k)
)
H1ml(k),

H2m0(k) ≡ In, H2m l+1(k) ≡
(
Q2(H1ml, G1m, G2m)(k) + B2 l+1(k)

)
H2ml(k),

G1m l+1(k) ≡ H1ml(k)G1m(k), G2m l+1(k) ≡ H1ml(k + 1)G2m(k),
g1m l+1(k) ≡ Hml(k)g1m(k), g2m l+1(k) ≡ Hml(k + 1)g2m(k),

Qj(H1ml, G1m, G2m)(k) ≡ 2In −Hjml(k)− 1
m

k∑
i=1

H1ml(i) (G1m(i) + G2m(i− 1))

(j = 1, 2; l = 0, . . . , µ− 1; m = 1, 2, . . . ). Then inclusion (2) holds.
Everywhere, without loss of generality, we can assume that H(t) ≡ In.
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