Reports of Enlarged Sessions of the Seminar of I. Vekua Institute of Applied Mathematics Volume 35, 2021

ON THE CRITERION OF THE CONVERGENCE OF DIFFERENCE SCHEMES FOR LINEAR GENERAL BOUNDARY PROBLEMS FOR SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

Malkhaz Ashordia

Abstract. The necessary and sufficient condition and effective sufficient conditions are presented for the convergence difference schemes corresponding to the general linear boundary value problems for systems of ordinary differential equations.

Keywords and phrases: Linear systems of ordinary differential equations, the general boundary value problem, numerical solvability, convergence of difference schemes, effective necessary and sufficient conditions.

AMS subject classification (2010): 34B05, 34K282.

Let the vector-function $x_0: I \to \mathbb{R}^n$ be the unique solution of problem

$$\frac{dx}{dt} = P(t)x + q(t) \text{ for a.a. } t \in I, \ \ell(x) = c_0$$
(1)

 $I = [a, b], P \in L(I; \mathbb{R}^{n \times n}), q \in L(I; \mathbb{R}^n), \ell : C(I; \mathbb{R}^n) \to \mathbb{R}^n$ is a linear vector-functional, bounded with respect to the norm $\|.\|_c$, and $c_0 \in \mathbb{R}^n$.

Along with the problem we consider the difference scheme

$$\Delta y(k-1) = \frac{1}{m} \left(G_{1m}(k) \, y(k) + G_{2m}(k-1) \, y(k-1) + g_{1m}(k) + g_{2m}(k-1) \right) (k = 1, \dots, m), \ \mathcal{L}_m(y) = \gamma_m$$
(1_m)

(m = 1, 2, ...), where $G_{jm} \in E(N_m; \mathbb{R}^{n \times n})$, $g_{jm} \in E(N_m; \mathbb{R}^n)$ (j = 1, 2) and $\mathcal{L}_m : E(J; \mathbb{R}^{n \times m}) \to \mathbb{R}^n$ is a given linear bounded vector-functional. In addition, assume $G_{1m}(0) = G_{2m}(m) = O_{n \times n}$ and $g_{1m}(0) = g_{2m}(m) = 0_n$ $(m \in \mathbb{N})$.

We present the effective necessary and sufficient (moreover, the effective sufficient) conditions for the convergence of the solution of difference scheme (1_m) to x_0 . They are proved in [2]. The analogous problem is investigated in [1] for the initial one.

Designations. $\mathbb{R} =] - \infty, +\infty[, \mathbb{N} = \{1, 2, ...\}, \mathbb{N}_m = \{1, ..., m\}, \widetilde{\mathbb{N}}_m = \{0, 1, ..., m\};$ I_n is the identity $n \times n$ -matrix, $O_{n \times n}$ and 0_n are, the zero $n \times n$ -matrix and zero nvector, respectively; $||x||_c = \max\{||x(t)|| : t \in I\}$ is the norm of the vector-function $x : I \to \mathbb{R}^n, |||\ell|||$ is the norm of the linear bounded vector-functional ℓ . If $J \subset \mathbb{N}$, then $\mathbb{E}(J; \mathbb{R}^{n \times m})$ is the space of all bounded matrix-functions $Y : J \to \mathbb{R}^{n \times m}$ with the norm $||Y||_J = \max\{||Y(k)|| : k \in J\}.$

Let $\Delta Y(i-1) \equiv Y(i) - Y(i-1)$ for $Y \in E(\widetilde{\mathbb{N}}_m; \mathbb{R}^{n \times m})$. Further, $\tau_m = (b-a)/m$, $\tau_{0m} = a$, $\tau_{km} = a + k\tau_m$ and $I_{km} =]\tau_{k-1m}, \tau_{km}[(k \in \mathbb{N}_m; m \in \mathbb{N})]$. Let ν_m be function defined by

$$\begin{split} \nu_m(t) &\equiv [(t-a)(b-a)^{-1}m] \ (m \in \mathbb{N}), \text{ where } [T] \text{ stands for the integer part of } T. \text{ Obviously,} \\ \nu_m(\tau_{km}) &= k \ (k \in \widetilde{\mathbb{N}}_m; m \in \mathbb{N}). \ p_m : \mathrm{BV}([a,b]; \mathbb{R}^n) \to \mathrm{E}(\widetilde{N}_m; \mathbb{R}^n) \text{ and } q_m : \mathrm{E}(\widetilde{N}_m; \mathbb{R}^n) \to \mathrm{BV}([a,b]; \mathbb{R}^n) \ (m \in \mathbb{N}) \text{ are operators defined, respectively, by } p_m(x)(k) = x(\tau_{km}) \text{ and} \\ q_m(y)(t) &\equiv \begin{cases} y(k) \ \text{if } t = \tau_{km} \ \text{for some } k \in \widetilde{\mathbb{N}}_m, \\ y(k) - \frac{1}{m}G_{1m}(k)y(k) - \frac{1}{m}g_{1m}(k) \ \text{if } t \in]\tau_{k-1m}, \tau_{km}[\ \text{for some } k \in \widetilde{\mathbb{N}}_m. \end{cases} \end{split}$$

Definition. The inclusion

$$\left(\left(G_{1m}, G_{2m}, g_{1m}, g_{2m}; \mathcal{L}_m\right)\right)_{m=1}^{+\infty} \in \mathcal{CS}(P, q; \ell)$$

$$\tag{2}$$

means that for every $c_0 \in \mathbb{R}^n$ and the sequence $\gamma_m \in \mathbb{R}^n$ $(m \in \mathbb{N})$, satisfying the condition $\lim_{m \to +\infty} \gamma_m = c_0$, the difference problem (1_m) has a unique solution $y_m \in \mathcal{E}(\widetilde{N}_m; \mathbb{R}^n)$ for any sufficiently large m and $\lim_{m \to +\infty} \|y_m - p_m(x_0)\|_{\widetilde{N}_m} = 0$.

Theorem 1. Let

$$\lim_{n \to +\infty} \mathcal{L}_m(p_m(x)) = \ell(x) \quad \text{for } x \in \mathrm{BV}(I; \mathbb{R}^n), \quad \text{and} \quad \limsup_{m \to +\infty} |||\mathcal{L}_m||| < +\infty.$$
(3)

Then inclusion (2) holds if and only if there exist matrix-functions $H \in AC(I; \mathbb{R}^{n \times n})$ and $H_{1m}, H_{2m} \in E(\widetilde{\mathbb{N}}_m; \mathbb{R}^{n \times n}) \ (m \in \mathbb{N})$ such that $\inf\{|\det(H(t))| : t \in I\} > 0$,

$$\limsup_{m \to +\infty} \sum_{k=1}^{m} \left(\left\| H_{2m}(k) - Q_{1m}(k) \right\| + \left\| H_{1m}(k) - Q_{2m}(k) \right) \right\| \right) < +\infty, \tag{4}$$

$$\lim_{m \to +\infty} \max_{k \in \widetilde{\mathbb{N}}_m} \{ \| H_{jm}(k) - H(\tau_{km}) \| \} = 0 \quad (j = 1, 2),$$
(5)

where $Q_{j+1m}(k) \equiv H_{jm}(k-j) - \frac{1}{m}H_{1m}(k)G_{j+1m}(k-j)$ (j=0,1), and uniformly on I

$$\lim_{m \to +\infty} \frac{1}{m} \sum_{k=1}^{\nu_m(t)} \sum_{j=0}^1 H_{1m}(k) \, G_{j+1m}(k-j) = \int_a^s H(\tau) P(\tau) d\tau),\tag{6}$$

$$\lim_{m \to +\infty} \frac{1}{m} \sum_{k=1}^{\nu_m(t)} \sum_{j=0}^{1} H_{1m}(k) g_{j+1m}(k-j) = \int_a^t H(\tau) q(\tau) d\tau.$$
(7)

Remark. The limits equalities (6) and (7) are fulfilled uniformly on I if, respectively, $\lim_{m \to +\infty} \max_{i \in \mathbb{N}_m} \left\{ \left| \frac{1}{m} \sum_{k=1}^{i} \sum_{j=0}^{1} H_{1m}(k) G_{j+1m}(k-j) - \int_{a}^{\tau_{im}} H(\tau) P(\tau) d\tau \right| \right\} = O_{n \times n},$ $\lim_{m \to +\infty} \max_{i \in \mathbb{N}_m} \left\{ \left| \frac{1}{m} \sum_{k=1}^{i} \sum_{j=0}^{1} H_{1m}(k) g_{j+1m}(k-j) - \int_{a}^{\tau_{im}} H(\tau) q(\tau) d\tau \right| \right\} = O_n.$

Let X and Y_m be the normal fundamental matrices of systems (1) and (1_m) $(m \in \mathbb{N})$. **Theorem 2.** Let conditions (3) and det $\left(I_n + (-1)^j \frac{1}{m} G_{jm}(k)\right) \neq 0$ $(j = 1, 2; k \in \mathbb{N}_m$ $m \in \mathbb{N}$) hold. Then inclusion (2) holds if and only if $\lim_{m \to +\infty} \max_{k \in \widetilde{\mathbb{N}}_m} \{\|Y_m^{-1}(k) - X^{-1}(\tau_{km})\|\}$ = 0 and $\lim_{m \to +\infty} \max_{i \in \mathbb{N}_m} \left\{ \left| \frac{1}{m} \sum_{k=1}^i \sum_{j=0}^1 Y_m^{-1}(k) g_{j+1m}(k-j) - \int_a^{\tau_{im}} X^{-1}(\tau) q(\tau) d\tau \right| \right\} = 0_n.$ If P satisfied the Lappo–Danilevskiĭ condition then $X(t) \equiv \exp\left(\int_{s}^{t} P(\tau) d\tau\right)$. Further, $Y_m(k) \equiv \prod_{i=k}^{1} \left(I_n - \frac{1}{m}G_{1m}(i)\right)^{-1} \left(I_n + \frac{1}{m}G_{2m}(i-1)\right) (m \in \mathbb{N})$. In Theorem 1, condition (4) automatically holds because Y_m is the fundamental matrix of system $(1_m) (m \in \mathbb{N})$.

Now we give a method of constructing of discrete real matrix-and vector-functions, respectively, G_{jm} and g_{jm} $(j = 1, 2; m \in \mathbb{N})$ for which the conditions of Theorem hold.

We use the inductive method. Let $\mathcal{E}_m \in E(\widetilde{\mathbb{N}}_m; \mathbb{R}^{n \times n})$ and let $\xi_m \in E(\widetilde{\mathbb{N}}_m; \mathbb{R}^n)$ $(m \in \mathbb{N})$ be such that $\lim_{m \to +\infty} \|\mathcal{E}_m\|_{\widetilde{\mathbb{N}}_m} = 0$ and $\lim_{m \to +\infty} m \|\xi_m\|_{\widetilde{\mathbb{N}}_m} = 0$. Let $P_{lm} = X(\tau_{lm}) + \mathcal{E}_m(l)$, and let $G_{1m}(1)$ and $G_{2m}(0)$ be such that $Y_m(1) = P_{1m}$ $(l \in \widetilde{\mathbb{N}}_m \ m \in \mathbb{N})$. It is evident that $(I_n - m^{-1}G_{1m}(1))^{-1}(I_n + m^{01}G_{2m}(0)) = P_{1m}$. So, $G_{1m}(1)$ and $G_{2m}(0)$ are arbitrary matrices such that $G_{1m}(1) = m(I_n - P_{1m}^{-1}) - G_{2m}(0) P_{1m}^{-1}$. Let $G_{1m}(k)$, $G_{2m}(k-1)$ and $Y_m(k)$ $(k = 1, \ldots, l-1)$ be constructed. For the construction $G_{1m}(l)$ and $G_{2m}(l-1)$ we use the equalities $Y_m(l) = P_{lm}$ and $Y_m(l) = (I_n - m^{-1}G_{1m}(l))^{-1}(I_n + m^{-1}G_{2m}(l-1))Y_m(l-1)$. As above, we obtain the relation $G_{1m}(l) = m(I_n - P_{l-1m}P_{lm}^{-1}) - G_{2m}(l-1) P_{l-1m}P_{lm}^{-1}$. So, $G_{1m}(l)$ and $G_{2m}(l-1)$ will be an arbitrary matrix satisfying the last equality.

Let us now construct the discrete vector-functions g_{jm} $(j = 1, 2; m \in \mathbb{N})$. As $g_{1m}(l)$ and $g_{2m}(l-1)$ we choose the vectors such that $m^{-1}Y_m^{-1}(l)(g_{1m}(1)+g_{2m}(l-1)) = q_{lm}$ $(l \in \mathbb{N}_m)$, where $q_{lm} \equiv \xi_m(l) + \int_a^{\tau_{lm}} X^{-1}(\tau)q(\tau)d\tau$ $(l \in \mathbb{N}_m)$. Therefore, we have the following equalities $g_{1m}(l) + g_{2m}(l-1) = mY_m(l)q_{lm}$ $(l \in \mathbb{N}_m)$ for the definition of g_{jm} $(j = 1, 2; m \in \mathbb{N})$. We realize constructed above discrete matrix-and vector-functions for the example.

Example. Let $X(t) \equiv \exp\left(\int_{a}^{t} P(\tau)d\tau\right)$ be the fundamental matrix of system (1) and let $\mathcal{E}_{m}(k) \equiv O_{n \times n}$ and $\xi_{m}(k) \equiv 0_{n}$ for $m \in \mathbb{N}$. Then $P_{lm} = \exp\left(\int_{a}^{\tau_{lm}} P(\tau)d\tau\right)$ $(l \in \widetilde{\mathbb{N}}_{m}, m \in \mathbb{N})$. If we choose $G_{2m}(l-1) = P_{lm}P_{l-1m}^{-1} = \exp\left(\int_{\tau_{l-1m}}^{\tau_{lm}} P(\tau)d\tau\right)$ $(l \in \mathbb{N}_{m}, m \in \mathbb{N})$, then $G_{1m}(l) \equiv (m-1)I_{n} - m\exp\left(-\int_{\tau_{l-1m}}^{\tau_{lm}} P(\tau)d\tau\right)$. For the definitions of g_{jm} (j = 1, 2) we have the relations $g_{1m}(l) + g_{2m}(l-1) \equiv m\int_{a}^{\tau_{lm}} C(\tau_{lm}, \tau)q(\tau)d\tau$ $(m \in \mathbb{N})$, where $C(t, \tau)$ is the Cauchy matrix of system (1). In particular, we can take $g_{1m}(l) \equiv \alpha m \int_{a}^{\tau_{lm}} C(\tau_{lm}, \tau)q(\tau)d\tau$ and $g_{2m}(l-1) \equiv (1-\alpha) m \int_{a}^{\tau_{lm}} C(\tau_{lm}, \tau)q(\tau)d\tau$ $(m \in \mathbb{N})$, where α is some number.

Theorem 3. Let conditions (3), $\lim_{m \to +\infty} \sup_{k=1}^{m} \left(\frac{1}{m} (\|G_{1m}(k)\| + \|G_{2m}(k-1)\|) \right) < \infty \text{ hold,}$ and $\lim_{m \to +\infty} \frac{1}{m} \sum_{k=1}^{\nu_m(t)} \sum_{j=0}^{1} G_{j+1m}(k-j) = \int_a^t P(\tau) d\tau, \\ \lim_{m \to +\infty} \frac{1}{m} \sum_{k=1}^{\nu_m(t)} \sum_{j=0}^{1} g_{j+1m}(k-j) = \int_a^t q(\tau) d\tau$ hold uniformly on I. Then inclusion (2) holds.

Proposition. Let conditions (3), (4), (5), $\lim_{m \to +\infty} \frac{1}{m} \max_{k \in \widetilde{\mathbb{N}}_m} \{ \|G_{jm}(k)\| + \|g_{jm}(k)\| \} = 0$ (j = 0)1,2) hold, and (6),(7) hold uniformly on I, where $H \in AC(I; \mathbb{R}^{n \times n}), H_{1m}, H_{2m} \in$ $\mathrm{E}(\widetilde{\mathbb{N}}_m; \mathbb{R}^{n \times n}) \ (m \in \mathbb{N}).$ Let, moreover, either $\limsup_{m \to +\infty} \left(\frac{1}{m} \sum_{k=0}^m (\|G_{jm}(k)\| + \|g_{jm}(k)\|) \right) < \infty$ (j = 1, 2) or $\limsup_{m \to +\infty} \sum_{k=0}^{m} \sum_{i=0}^{1} ||H_{1m}(k) - H_{2m}(k-j)|| < \infty$. Then inclusion (2) holds. **Corollary.** Let condition (3) hold and let there exist a natural μ and matrix-functions $B_{jl} \in \mathcal{E}(\widetilde{\mathbb{N}}_m; \mathbb{R}^{n \times n}), B_{jl}(a) = O_{n \times n} \ (j = 1, 2; l = 0, \dots, \mu - 1)$ such that $\lim_{m \to +\infty} \sup_{k=1}^{m} \left(\left\| H_{2m}(k) - Q_{1m\mu}(k) \right\| + \left\| H_{1m}(k) - Q_{2m\mu}(k) \right\| \right) < \infty,$ $\lim_{m \to +\infty} \max_{k \in \widetilde{\mathbb{N}}_{m}} \{ \left\| H_{jm\mu}(k) - I_{n} \right\| \} = 0 \quad (j = 1, 2), \text{ where } Q_{j+1m\mu}(k) \equiv H_{jm\mu}(k-j)$ $-\frac{1}{m}H_{1m\mu}(k)G_{j+1m\mu}(k-j) \ (j=0,1), \text{ and } \lim_{m \to +\infty} \frac{1}{m} \sum_{k=1}^{\nu_m(t)} \sum_{i=0}^{1} G_{j+1m\mu}(k-j) = \int_{0}^{t} P(\tau)d\tau,$ $\lim_{m \to +\infty} \frac{1}{m} \sum_{k=1}^{\nu_m(t)} \sum_{i=0}^{1} g_{j+1\,m\mu}(k-j) = \int_{-1}^{t} q(\tau) d\tau \text{ hold uniformly on } I, \text{ where } H_{1m0}(k) = I_n,$ $H_{1ml+1}(k) \equiv \left(\frac{1}{m}H_{1ml}(k)G_{1m}(k) + \mathcal{Q}_1(H_{1ml},G_{1m},G_{2m})(k) + B_{1l+1}(k)\right)H_{1ml}(k),$ $H_{2m0}(k) \equiv I_n, H_{2ml+1}(k) \equiv \left(\mathcal{Q}_2(H_{1ml}, G_{1m}, G_{2m})(k) + B_{2l+1}(k)\right) H_{2ml}(k),$ $G_{1ml+1}(k) \equiv H_{1ml}(k)G_{1m}(k), \quad G_{2ml+1}(k) \equiv H_{1ml}(k+1)G_{2m}(k),$ $g_{1ml+1}(k) \equiv H_{ml}(k)g_{1m}(k), \quad g_{2ml+1}(k) \equiv H_{ml}(k+1)g_{2m}(k),$ $\mathcal{Q}_{j}(H_{1ml}, G_{1m}, G_{2m})(k) \equiv 2I_{n} - H_{jml}(k) - \frac{1}{m} \sum_{i=1}^{k} H_{1ml}(i) \left(G_{1m}(i) + G_{2m}(i-1)\right)$ $(j = 1, 2; l = 0, \dots, \mu - 1; m = 1, 2, \dots)$. Then inclusion (2) holds. Everywhere, without loss of generality, we can assume that $H(t) \equiv I_n$.

REFERENCES

- ASHORDIA, M. The Initial Problem for Linear Systems of Generalized Ordinary Differential Equations, Linear Impulsive and Ordinary Differential Systems. Numerical Solvability. *Mem. Differ. Equ. Math. Phys.*, 78 (2019), 1-162.
- ASHORDIA, M. The General Boundary Value Problems for Linear Systems of Generalized Ordinary Differential Equations, Linear Impulsive Differential and Ordinary Differential Systems. Numerical Solvability. Mem. Differ. Equ. Math. Phys., 81 (2020), 1-184.

Received 20.05.2021; revised 12.07.2021; accepted 25.09.2021.

Author(s) address(es):

Malkhaz Ashordia A. Razmadze Mathematical Institute of I. Javakhishvili Tbilisi State University Tamarashvili str. 6, 0177 Tbilisi, Georgia E-mail: ashord@rmi.ge, malkhaz.ashordia@tsu.ge