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Abstract. This report represents the part of works, dedicated to the creation of consistent 2D

boundary value problems corresponding, to elastic thin-walled structures (TWS), an analysis for

Kármán type system of DEs without variety of ad hoc assumptions, since in the classical form

of this system, one of them represents the condition of compatibility. Then we find the general

solution of nonlinear systems by development methodology of generalized analysis functions

theory for some class of complex systems of DEs, containing the integrals both of Volterra and

Fredholm type.
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1 Introduction. Let us consider the equilibrium equations of the elastic body in
the form [1, 2]:

∂j(σij + σkjui,k) = fi, x ∈ Ωh = D(x, y)×
]
h−(x, y), h+(x, y)

[
, (1)

with the boundary conditions:

Ti3 = σi3 + σj3ui,j = g±i , x ∈ S± = D × {h±}, T3 = (T13, T23, T33)
T , (2)

l [∂1, ∂2, ∂3] (x, u) = g, x ∈ S = ∂D ×
]
h−, h+

[
. (3)

The relation between the displacement vector u = (u1, u2, u3), the symmetrical strain ε
and stress σ tensors satisfy the Cauchy formulae and Hooke’s law:

εij =
1

2
(ui,j + uj,i + ui,kuj,k), ε = Aσ, σ = Bε, i, j = 1, 2, 3. (4)

2 On problems of constructing von Kármán type systems. Among the
works, dedicated to the construction and justification of the plate and shell theory, a
special mention should be made to the monograph [1]. In particular, Ciarlet wrote: ”The
2D of von Kármán equations for nonlinearly elastic plates play an almost mythical role
in applied mathematics. While they have been abundantly, and satisfactorily, studied
from the mathematical standpoint, as regards notably various questions of existence,
regularity, and bifurcation of their solutions, their physical soundness has often been
seriously questioned”.Based on works [2 - 4] the method of constructing the anisotropic



To the Creation of Consistent Models for of Thin-Walled Structures 89

inhomogeneous 2D nonlinear models of von Kármán-Mindlin-Reissner (KMR) type for
binary mixture of porous, piezo-magneto-electric and electrically conductive and viscous
elastic TWS with variable thickness is given. In particular, the problem of “Physical
Soundness” for von Kármán system was solved fully. Against elaborations [1, Ch. 5] the
corresponding variables are the quantities with physical meaning such as the averaged
components of the displacement vector, bending and twisting moments, shearing forces,
rotation of normals, surface efforts. For isotropic and generalized transversal elastic plates
in the linear case KMR have the unified representation as the systems of Cauchy-Riemann
DEs in terms of planar expansion and rotation. Below for clearness and simplicity consider
static problems of the theory of elasticity. Then for an isotropic case we have:

D∆2u∗
3 =

(
1− h2(1+2γ)(2−ν)

3(1−ν)
∆
) (

g+3 − g−3
)
+ 2h

(
1− 2h2(1+2γ)

3(1−ν)
∆
)
L [u∗

3, F∗]

+
(
g+α,α + g−α,α

)
−

h∫
−h

(
tfα,α −

(
1− 1

1−ν
(h2 − t2)∆

)
f3
)
dt+R8 [u

∗
3; γ] ,

Qα3 − 1+2γ
3

h2∆Qα3 = −D∆u∗
3,α + h2(1+2γ)

3(1−ν)
∂α

(
g+3 − g−3 + 2h(1 + ν)L [u∗

3, F∗]
)

+h (g+α + g−α )−
h∫
−h

(
tfα − 1+ν

2(1−ν)
(h2 − t2)f3,α

)
dt+R5+α [Qα3; γ] .

(5)

As it is known, even in the case of an isotropic elastic plate of constant thickness the
subject of justification was an unsolved problem. The point is that von Kármán, Love,
Timoshenko, L. Landau, Lukasiewicz, Washizu,... considered Saint-Venant-Beltrami com-
patibility condition as one of the equations of the corresponding system of DEs. In [3] we
have proved that all DEs systems of von KMR type follow from (1).

We have the following relation (decomposition of Monge-Ampére operator):

L[u, v] = [u, v] = ∂1[∂1(∂2u∂2v)− ∂2(∂1u∂2v)]− ∂2[∂2(∂1u∂2v)− ∂1(∂2u∂1v)]

= −(∂11u∂22v − 2∂12u∂12v + ∂22u∂11v). (M − A)

It is necessary that to system (5) we must add, for evidence, part of von Kármán type
system (an isotropic case, see [3, formula (17)]:

(λ∗ + 2µ)∂1τ + µ∂2ω =
1

2h
f̄1 + µ(∂1(ū3,2)

2 − ∂2(ū3,1ū3,2)) + λ1(σ33,1, 1) +R4,

(λ∗ + 2µ)∂2τ − µ∂1ω =
1

2h
f̄2 + µ(∂2(ū3,1)

2 − ∂1(ū3,1ū3,2)) + λ1(σ33,2, 1) +R5.

(6)

Here τ = ε̄αα, ω = ū1,2 − ū2,1 are plane expansion and rotation, λ1 = λ/2h(λ + 2µ),
nonlinear terms represent a decomposition of Monge-Ampére operator if in (M − A),
u = v = u3.

3 On applications of the complex variable function theory. The representa-
tions (5) allow to apply complex analysis. Let us preliminarily consider the first equation
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(5) and underline the main members:

D′∆[u, φ] = D′([∆u, φ] + [u,∆φ] + 2[∂αu, ∂αγ]), D∆2u. (7)

The calculate and analysis of these expressions (7) of a symbolical determinant show
that the characteristic forms of systems type (5) may be positive, negative or zero values
as they represent arbitrary functions of x, y.

We form the following iterative-direct (hybrid) method for finding the solution of
rewriting in complex variables systems of PDEs (5), (6).

Let [U(z, z̄)][m] denote m − th approach for deflection u∗
3(x, y) which is calculated by

the known right-hand terms without R and (m− 1)-th order approach of summand

2Eh
16D

(
1− h2(1+2γ)

3(1−ν)
∂z̄∂z

) ∫ z

0

∫ z̄

0
(z − ζ)(z̄ − ζ̄)[U, V ][m−1]dζdζ̄, EV = Φ

(
z+z̄
2
, z−z̄

2i

)
, (8)

we do some operations for the second equation of (5) for shearing forces and for system
(6). This system is equivalent to the following equation (see [3]):

∆(σ11 + σ22) = −E

2
[w,w] +

ν

2h

∫ h

−h

∆σ33dt+
1 + ν

2h
f̄α,α, (K −R)2.

Let

V [m] = V [m](z, z̄) = − µ
λ∗+2µ

∫ z̄

0

∫ z

0
(z̄ − ζ̄)(z − ζ)[U [m−1], U [m−1]]dζ⃗dζ + F (z̄, z). (9)

Thus, by means of complex analysis we must investigate (8). An iterative scheme,
described by (9), corresponds to the solution of Volterra nonlinear integral equations with
the contraction operator whereas the processes by schemes (8) contain both Volterra and
Fredholm type operators with an arbitrary parameter. The convergence for only Volterra
type process is evident. When γ ̸= −0.5 the convergence depends on the Fredholm type
operator

Fr(U, V ) = ∂z̄∂zλ

∫ z̄

0

∫ z

0

(z̄ − ζ̄)(z − ζ)[U(ζ, ζ̄)V (ζ, ζ̄)]dζ̄dζ

with an arbitrary parameter, denoted for simplicity by λ. The operator λ−1F (U, V )
depends on the behavior of expression which may generate different kinds of waves (shock,
soliton) functions too and in the cases when they are uniformly bounded functions the
process, corresponding to applications of the Fredholm operator will be convergent as the
corresponding operator will be a contracted one. More convenient may be Seidel’s type

iterative scheme: let the initial value be U [0] =
1

4
z2z̄2. Then in expressions of type (8) we

used V [1] defining from (9) and so on. The following theorem is true

Theorem. Let us consider the following iterative process:

V [m](z, z̄) = a
∫ z

0

∫ z̄

0
(z − ζ)(z̄ − ζ̄)

[
U [m−1], U [m−1]

]
dζdζ̄, m = 1, 2, ...,

U [m](z, z̄) = b
∫ z

0

∫ z̄

0
(z − ζ)(z̄ − ζ̄)

[
U [m−1], V [m]

]
dζdζ̄

+c
∫ z

0

∫ z̄

0

[
U [m−1], V [m]

]
dζdζ̄, m = 1, 2, ...,
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then it is convergence for all finite a, b, |c| < 4

3
, U [0] = znz̄n and an integer ∀n ≥ 2.

Proof. The essential moment is estimation of the transition effect from m step to m + 1
step. Let U [m] = zpz̄p. The transition process contains two stages: the calculation of
expressions of the type [u, v] and corresponding integrals. It is evident that[

U [m], U [m]
]
= 2(p(p− 1))2z2p−2z2p−2 − 2p4z2p−2z̄2p−2 = −2p2(2p− 1)z2p−2z̄2p−2,

then we also have:

V [m+1] = −2ap2(2p− 1)

4p2(2p− 1)2
z2pz̄2p = − a

2(2p− 1)
z2pz̄2p,

and [
U [m], V [m+1]

]
= −2ap2(3p− 1)

2p− 1
z2p−2z̄2p−2, cp =

2p2(3p− 1)

2p− 1
,

I1 = abcp

∫ z

0

∫ z̄

0

(z − ζ)(z̄ − ζ̄)z2p−2z̄2p−2dzdz̄ =
abcp

4p2(2p− 1)2
z2pz̄2p,

I2 = accp

∫ z

0

∫ z̄

0

z2p−2z̄2p−2dzdz̄ =
accp

(2p− 1)2
z2p−1z̄2p−1,

cp(2p− 1)−2 <
3

4
+

7

8(p− 1, 5)
.

This relation shows that if c = γ, |γ| < 4

3
for all bounded functions a, b the above iterative

process is convergence.
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